Skip to main content
Log in

Pollinator abundance, morphology, and flower visitation rate: analysis of the “quantity” component in a plant-pollinator system

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

Abundance and flower visitation rate of the pollinators of Lavandula latifolia (Labiatae), an insect-pollinated shrub, were studied over a 6-year period. The objective was to elucidate interspecific patterns in the “quantity” component of the plant-pollinator interaction. A total of 54 insect taxa are considered in the analyses, including hynenopterans, dipterans and lepidopterans. Most pollinators were comparatively scarce, with a few taxa acounting collectively for the majority of individuals. Pollinators differed broadly in flower visitation rate (0.2–30 flowers/min). Most of this variation was explained by differences in flower handling time (HT). Regardless of proboscis length, hymenopterans had intrinsically shorter handling times than lepidopterans. Within each group, HT decreased exponentially with increasing proboscis length. Abundance and visitation rate were uncorrelated across pollinator taxa. The total number of visits that each pollinator contributed to the plant (NFV) was estimated as the product of abundance x visitation rate. NFV values spanned four orders of magnirade. A small, taxonomically diverse group of species (1 moth, 1 butterfly, 4 bees) accounted for most visits and thus could effectively exert some selection on floral features. Nevertheless, the morphological diversity represented in this group of dominant pollinators probably constrains plant specialization, as they will most likely select for different floral features or in opposing directions on the same traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold RM (1982) Pollination, predation and seed set in Linaria vulgaris (Scrophulariaceae). Am Midl Nat 107:360–369

    Google Scholar 

  • Beattie AJ, Breedlove DE, Ehrlich PR (1973) The ecology of the pollinators and predators of Frasera speciosa. Ecology 54:81–91

    Google Scholar 

  • Böcher J, Phillipp M (1985) Aspects of the reproductive biology of Mimulus repens (Scrophulariaceae) at Lake Ellesmere, Canterbury, New Zealand. N Z J Bot 23:141–149

    Google Scholar 

  • Campbell DR (1985) Pollinator sharing and seed set of Stellaria pubera: competition for pollination. Ecology 66:544–553

    Google Scholar 

  • Devesa JA, Arroyo J, Herrera J (1985) Contribución al conocimiento de la biologia floral del género Lavandula. Anal Jard Bot Madrid 42:165–186

    Google Scholar 

  • Faegri K van der, Pijl L (1979) The Principles of Pollination Ecology. 3rd ed. Pergamon Press, Oxford

    Google Scholar 

  • Feinsinger P (1983) Coevolution and pollination. In: Futuyma DJ, Slatkin M (eds), Coevolution, Sinauer, Sunderland, MA, pp 282–310

    Google Scholar 

  • Grace J, Nelson M (1981) Insects and their pollen loads at a hybrid Heracleum site. New Phytol 87:413–423

    Google Scholar 

  • Harder LD (1982) Measurement and estimation of functional proboscis length in bumblebees (Hymenoptera: Apidae). Can J Zool 60:1073–1079

    Google Scholar 

  • Harder LD (1983) Flower handling efficiency of bumble bees: morphological aspects of probing time. Oecologia 57:274–280

    Google Scholar 

  • Harder LD (1985) Morphology as a predictor of flower choice by bumble bees. Ecology 66:198–210

    Google Scholar 

  • Harder LD (1986) Effects of nectar concentration and flower depth on flower handling efficiency of bumble bees. Oecologia 69:309–315

    Google Scholar 

  • Herrera CM (1985) Determinants of plant-animal coevolution: the case of mutualistic dispersal of seeds by vertebrates. Oikos 44:132–141

    Google Scholar 

  • Herrera CM (1987a) Components of pollinator “quality”: comparative analysis of a diverse insect assemblage. Oikos 50:79–90

    Google Scholar 

  • Herrera CM (1987b) Componentes del flujo génico en Lavandula latifolia Medicus: polinización y dispersión de semillas. Anal Jard Bot Madrid 44:49–61

    Google Scholar 

  • Herrera CM (1988) Variation in mutualisms: the spatio-temporal mosaic of a pollinator assemblage. Biol J Linn Soc 35:95–125

    Google Scholar 

  • Herrera CM, Jordano P (1981) Prunus mahaleb and birds: the high-efficiency seed dispersal system of a temperate fruiting tree. Ecol Monogr 51:203–218

    Google Scholar 

  • Herrera J (1984) Vegetación del Valle del Guadahornillos (Sierra de Cazorla, Jaén). Studia Oecol 5:77–96

    Google Scholar 

  • Hopper SD (1980) Pollination of the rain-forest tree Syzygium tierneyanum (Myrtaceae) at Kuranda, Northern Queensland. Aust J Bot 28:223–237

    Google Scholar 

  • Howe HF (1984) Constraints on the evolution of mutualisms. Am Nat 123:764–777

    Google Scholar 

  • Inouye DW (1980) The effect of proboscis and corolla tube lengths on patterns and rates of flower visitation by bumblebees. Oecologia 45:197–201

    Google Scholar 

  • Kempton RA, Taylor LR (1974) Log-series and log-normal parameters as diversity discriminants for the Lepidoptera. J Anim Ecol 43:381–399

    Google Scholar 

  • Kingsolver JG, Daniel TL (1979) On the mechanics and energetics of nectar feeding in butterflies. J Theor Biol 76:167–179

    Google Scholar 

  • May PG (1985) Nectar uptake rates and optimal nectar concentrations of two butterfly species. Oecologia 66:381–386

    Google Scholar 

  • May PG (1988) Determinants of foraging profitability in two nectarivorous butterflies. Ecol Entomol 13:171–184

    Google Scholar 

  • Miller RB (1978) The pollination ecology of Aquilegia elegantula and A. caerulea (Ranunculaceae) in Colorado. Am J Bot 65:406–414

    Google Scholar 

  • Montalvo AM, Ackerman JD (1986) Relative pollinator effectiveness and evolution of floral traits in Spatiphyllum friedrichsthalii (Araceae). Am J Bot 73:1665–1676

    Google Scholar 

  • Motten AF (1983) Reproduction of Erythronium umbilicatum (Liliaceae): pollination success and pollinator effectiveness. Oecologia 59:351–359

    Google Scholar 

  • Motten AF (1986) Pollination ecology of the spring wildflower community of a temperate deciduous forest. Ecol Monogor 56:21–42

    Google Scholar 

  • Motten AF, Campbell DR, Alexander DE, Miller HL (1981) Pollination effectiveness of specialist and generalist visitors to a North Carolina population of Claytonia virginica. Ecology 62:1278–1287

    Google Scholar 

  • Muñoz A, Devesa JA (1987) Contribución al conocimiento de la biología floral del género Lavandula L. II. Lavandula stoechas L., subsp. stoechas. Anal Jard Bot Madrid 44:63–78

    Google Scholar 

  • Nilsson LA (1978) Pollination ecology of Epipactis palustris (Orchidaceae). Bot Notiser 131:355–368

    Google Scholar 

  • Pellmyr O (1984) The pollination ecology of Actaea spicata (Ranunculaceae). Nord J Bot 4:443–456

    Google Scholar 

  • Pellmyr O (1985) The pollination biology of Actaea pachypoda and A. rubra (including A. erythrocarpa) in northern Michigan and Finland. Bull Torrey Bot Club 112:265–273

    Google Scholar 

  • Pivnick KA, McNeil JN (1985) Effects of nectar concentration on butterfly feeding: measured feeding rates for Thymelicus lineola (Lepidoptera: Hesperiidae) and a general feeding model for adult Lepidoptera. Oecologia 66:226–237

    Google Scholar 

  • Preston FW (1948) The commonness, and rarity, of species. Ecology 29:254–283

    Google Scholar 

  • Proctor M, Yeo P (1973) The pollination of flowers. Collins, London

    Google Scholar 

  • Pyke GH, Waser NM (1981) The production of dilute nectars by hummingbird and honeyeater flowers. Biotropica 13:260–270

    Google Scholar 

  • Ranta E (1983) Foraging differences in bumblebees. Ann Ent Fenn 49:17–22

    Google Scholar 

  • Ranta E, Lundberg H (1980) Resource partitioning in bumblebees: the significance of differences in proboscis length. Oikos 35:298–302

    Google Scholar 

  • Richards KW (1987) Diversity, density, efficiency, and effectiveness of pollinators of cicer milkvetch, Astragalus cicer L. Can J Zool 65:2168–2176

    Google Scholar 

  • Schemske DW (1976) Pollinator specificity in Lantana camara and L. trifolia (Verbenaceae). Biotropica 8:260–264

    Google Scholar 

  • Schemske DW (1983) Limits to specialization and coevolution in plant-animal mutualisms. In: Nitecki MH (ed) Coevolution, Univ Chicago Press, Chicago, pp 67–109

    Google Scholar 

  • Schemske DW, Horvitz CC (1984) Variation among floral visitors in pollination ability: a precondition for mutualism specialization. Science 225:519–521

    Google Scholar 

  • Schmitt J (1983) Flowering plant density and pollinator visitation in Senecio. Oecologia 60:97–102

    Google Scholar 

  • Seeley TD (1985) Honeybee Ecology. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Snow AA, Roubik DW (1987) Pollen deposition and removal by bees visiting two tree species in Panamá. Biotropica 19:57–63

    Google Scholar 

  • Spears EE (1983) A direct measure of pollinator effectiveness. Oecologia 57:196–199

    Google Scholar 

  • Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms, I: pollination mechanisms. Ann Rev Ecol Syst 1:307–326

    Google Scholar 

  • Sugden EA (1986) Anthecology and pollinator efficacy of Styrax officinale subsp. redivivum (Styracaceae). Am J Bot 73:919–930

    Google Scholar 

  • Tepedino VJ, Stackhouse M (1987) Bee visitors of sweetvetch, Hedysarum boreale boreale (Leguminosae), and their pollen-collecting activities. Great Basin Nat 47:314–318

    Google Scholar 

  • Thompson JN (1982) Interaction and Coevolution. Wiley, New York

    Google Scholar 

  • Visscher PK, Seeley TD (1982) Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology 63:1790–1801

    Google Scholar 

  • Waser NM (1983) The adaptive nature of floral traits: ideas and evidence. In: Real L (ed) Pollination biology, Academic Press, London, pp 241–285

    Google Scholar 

  • Waser NM, Price MV (1983) Optimal and actual outcrossing in plants, and the nature of plant-pollinator interaction. In: Jones CE, Little RJ (eds) Handbook of Experimental Pollination Biology, Van Nostrand Reinhold, NY, pp 341–359

    Google Scholar 

  • Waser NM, Price MV, Montalvo AM, Gray RN (1987) Female mate choice in a perennial herbaceous wildflower, Delphinium nelsonii. Evol Trends Plants 1:29–33

    Google Scholar 

  • Watt WB, Hoch PC, Mills SG (1974) Nectar resource use by Colias butterflies. Chemical and visual aspects. Oecologia 14:353–374

    Google Scholar 

  • Wheelwright NT, Orians GH (1982) Seed dispersal by animals: contrasts with pollen dispensal, problems of terminology, and constraints on coevolution. Am Nat 119:401–413

    Google Scholar 

  • Williams CB (1964) Patterns in the Balance of Nature. Academic Press, London

    Google Scholar 

  • Winsor JA, Davis LE, Stephenson AG (1987) The relationship between pollen load and fruit maturation and the effect of pollen load on offspring vigor in Cucubita pepo. Am Nat 129:643–656

    Google Scholar 

  • Wolin CL, Galen C, Watkins L (1984) The breeding system and aspects of pollination effectiveness in Oenothera speciosa (Onagraceae). Southwest Nat 29:15–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera, C.M. Pollinator abundance, morphology, and flower visitation rate: analysis of the “quantity” component in a plant-pollinator system. Oecologia 80, 241–248 (1989). https://doi.org/10.1007/BF00380158

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00380158

Key words

Navigation