Skip to main content

Advertisement

Log in

Patterns of diversity of flower-visitor assemblages to the understory Araceae in a tropical mountain forest in Colombia

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

In the Araceae, pollination biology has been extensively evaluated in several genera mainly in lowland tropical areas. However, the influence of physical factors such as elevation or precipitation on plant/flower-visitor interactions at the community level remains challenging for this plant family, specifically in tropical mountain forests. The aim of this study was to analyze how the species diversity and abundance of flowering Araceae and their flower-visitor assemblages change along an elevation gradient and through time, in response to changes in mean monthly precipitation in a tropical mountain forest located in Jardín, Antioquia, Colombia. Eighteen flowering Araceae species and floral visitors belonging to seven orders were recorded. Flower-visitor diversity decreased with elevation. A trend of increasing flowering Araceae and flower-visitor abundance richness at intermediate levels of precipitation was observed. Diptera were dominant in the lower part and Thysanoptera were dominant in the upper part of the gradient. The pattern of plant species distribution along the elevation and the amount of precipitation influenced the availability of flower resources, and, as a consequence, affected the spatial and temporal composition of flower-visitor assemblages. Local strategies for the conservation of the diversity of insect flower-visitors and their interactions should be focused on the implementation of agricultural practices that reduce the use of pesticides within adjacent commercial plantations and the avoidance of illegal clearings, maintaining unbroken elevational gradients of forest, which is the only way to protect the flowering resources for anthophilous insects. At the same time, continuous forest promotes the maintenance of macro and microclimatic conditions, preserving the stability of insect populations and diversity amongst several functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alarcón R, Waser NM, Ollerton J (2008) Year-to-year variation in the topology of a plant—pollinator interaction network. Oikos 117:1796–1807

    Article  Google Scholar 

  • Ananthakrishnan TN (1993) The role of thrips in pollination. Curr Sci 65:262–264

    Google Scholar 

  • Arroyo MTK, Primack R, Armesto JJ (1982) Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. Am J Bot 69:82–97

    Article  Google Scholar 

  • Arroyo MTK, Armesto JJ, Primack R (1985) Community studies in pollination ecology in the high temperate Andes of central Chile. II. Plant Syst Ecol 49:187–204

    Google Scholar 

  • Barriault I, Barabé D, Cloutier L, Gibernau M (2010) Pollination ecology and reproductive success in Jack-in-the Pulpit (Arisaema triphyllum) in Québec (Canada). Plant Biol 12(1):161–171

    Article  CAS  PubMed  Google Scholar 

  • Beatty SW (1984) Influence of microtopography and canopy species on spatial patterns of forest understory plants. Ecology 65:1406–1419

    Article  Google Scholar 

  • Bendix J, Homeier J, Cueva Ortiz E, Emck P, Breckle S-W, Richter M, Beck E (2006) Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest. Int J Biometeorol 50:370–384

    Article  CAS  PubMed  Google Scholar 

  • Bosch J, Retana J, Cerdá X (1997) Flowering phenology, floral traits and pollinator composition in an herbaceous Mediterranean plant community. Oecologia 109:583–591

    Article  Google Scholar 

  • Burkle LA, Alarcón R (2011) The future of plant-pollinator diversity: understanding interaction networks across time, space and global change. Am J Bot 98(3):528–538

    Article  PubMed  Google Scholar 

  • Cardelús CL, Colwell RK, Watkind JE Jr (2006) Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. J Ecol 94:144–156

    Article  Google Scholar 

  • Chan WP, Chen IC, Colwell RK, Liu Wc, Huang C, Shen SF (2016) Seasonal and daily climate variation have opposite effects on species elevational range size. Science 351:1437–1439

    Article  CAS  PubMed  Google Scholar 

  • Chartier M, Gibernau M, Renner SS (2014) The evolution of pollinator-plant interaction types in the Araceae. Evol Int J org Evol 68:1533–1543

    Article  Google Scholar 

  • Chouteau M, Gibernau M, Barabé D (2008) Relationship between floral characters, pollination mechanisms, life forms, and hábitats in Araceae. Biol J Linnean Soc 156:29–42

    Article  Google Scholar 

  • Corantioquia (2016) Plan de Acción 2016–2019. Corantioquia actúa por el patrimonio ambiental de nuestro territorio, p 198. http://www.corantioquia.gov.co

  • Croat TB (1988) Ecology and life forms of Araceae. Aroideana 11:4–55

    Google Scholar 

  • Croat TB (1992) Species diversity of Araceae in Colombia: a preliminary survey. Ann Mo Bot Garden 79:17–28

    Article  Google Scholar 

  • Croat TB (1999) The Araceae of Peru—distribution, species diversity and centers of endemism. Arnaldoa 6:45–80

    Google Scholar 

  • Cuartas-Hernández S (2006) Efectos de la fragmentación del bosque tropical: biología reproductiva y sistema de apareamiento en poblaciones de Dieffenbachia seguine (Araceae). Dissertation. Universidad Nacional Autónoma de México

    Google Scholar 

  • Cuartas-Hernández S, Gómez-Murillo L (2015) Effect of biotic and abiotic factors on diversity patterns of anthophyllous insect communities in a tropical mountain forest. Neotrop Entomol 44:214–223. doi:10.1007/s13744-014-0265-2

    Article  PubMed  Google Scholar 

  • Cuesta F, Peralvo M, Valarezo N (2009) Los bosques montanos de los Andes Tropicales: una evaluación regional de su estado de conservación y de su vulnerabilidad a efectos del cambio climático, Imprenta Mariscal, Quito

  • Delgado JM, Castro-Ramírez AE, Moron MA, Ruíz-Montoya L (2012) Diversidad de escarabajos Scarabaeidae (Coleoptera) en las principales condiciones de hábitat de Montebello (Chiapas). Acta Zool Mex 28:185–210

    Google Scholar 

  • Dunne JA, Williams RJ, Martínez ND (2002a) Foodweb structure and network theory: the role of connectance and size. Proc Natl Acad Sci USA 99:12917–12922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunne JA, Williams RJ, Martínez ND (2002b) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567

    Article  Google Scholar 

  • Dunne JA, Harte J, Taylor KJ (2003) Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecol Monogr 73:69–86

    Article  Google Scholar 

  • Dupont YL, Padrón B, Olesen JM, Petanidou (2009) Spatio-temporal variation in the structure of pollination networks. Oikos 118:1261–1269

    Article  Google Scholar 

  • Ebeling A, Klein AM, Schumacher J, Weisser WW, Tscharntke T (2008) How does plant richness affect pollinator richness and temporal stability of flower visits? Oikos 117:1808–1815

    Article  Google Scholar 

  • Ebeling A, Klein AM, Tscharntke T. 2011. Plant–flower visitor interaction webs: Temporal stability and pollinator specialization increases along an experimental plant diversity gradient. Basic Appl Ecol 12:300–309

    Article  Google Scholar 

  • Escobar F, Lobo M, Halffter G (2005) Altitudinal variation of dung beetle (Scarabaeidae: Scarabaeinae) assemblages in the Colombian Andes. Global Ecol Biogeogr 14:327–337

    Article  Google Scholar 

  • Faegri K, Van Der Pijl (1979) The principles of pollination ecology, 3rd edn Pergamon Press, New York

    Google Scholar 

  • Faheem M, Aslam M, Razaq M (2004) Pollination ecology with special reference to insects a review. J Res Sci 4:395–409

    Google Scholar 

  • Fisher BL (1998) Ant diversity patterns along an elevational gradient in the Réserve Spéciale d’Anjanaharibe-Sud and on the Western Masoala Peninsula, Madagascar. Fieldiana Zool 90:39–67

    Google Scholar 

  • Franz NM (2007) Pollination of Anthurium (Araceae) by derelomine flower weevils (Coleoptera: Curculionidae). Rev Biol Trop 55:269–277

    PubMed  Google Scholar 

  • Freitas L, Sazima M (2006) Pollination biology in a tropical high-altitude grassland in Brazil: Interactions at the community level. Annals Mo Bo Gar 93:465–516

    Article  Google Scholar 

  • García Fayos P, Goldarazena A (2008) The role of Thrips in pollination of Arctostaphyllos uvaursi. Int J Plant Sci 169:776–781

    Article  Google Scholar 

  • García-Robledo C, Quintero-Marín P, Mora-Kepter F (2005) Geographic variation and succesion of arthropod communities in inflorescences and infructescences of Xanthosoma (Araceae). Biotropica 37:650–656

    Article  Google Scholar 

  • Gentry AH (1992) Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos 63:19–28

    Article  Google Scholar 

  • Ghazoul J (2006) Floral diversity and the facilitation of pollination. J Ecol 94:295–304

    Article  Google Scholar 

  • Gibernau M (2003) Pollinators and visitors to Aroid inflorescences. Aroideana 26: 66–83

    Google Scholar 

  • Gibernau M (2011) Pollinators and visitors of aroid inflorescences: an addendum. Aroideana 34:70–83

    Google Scholar 

  • Gibernau M (2015a) Pollination ecology of two Dieffenbachia in French Guiana. Aroideana 38(EN2):38–66

    Google Scholar 

  • Gibernau M (2015b) Floral biology, pollination ecology & genetics of dieffenbachia (Araceae)—a review. Aroideana 38: 19–38

    Google Scholar 

  • Gibernau M, Barabé D, Cerdan P, Dejean A (1999) Beetle pollination of Philodendron solimoesense (Araceae) in French Guiana. Int J Plant Sci 160:1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Gibernau M, Barabé D, Labat D (2000) Flowering and pollination of Philodendron melinonii (Araceae) in French Guiana. Plant Biol 2:331–334

    Article  Google Scholar 

  • Gibernau M, Chartier M, Barabé D (2010) Recent advances towards an evolutionary comprehension of Araceae pollination. In: Seberg O, Peterson G, Barfod AS, Davis JI (eds). Diversity, phylogeny and evolution in the monocotyledons. Fourth international conference on the comparative biology of the monocotyledons proceedings. Aarhus University Press, Denmark

    Google Scholar 

  • Gorelik R (2006) Combining richness and abundance to a single diversity index using matrix analogues of Shannon’s and Simpson’s indices. Ecography 29:525–530

    Article  Google Scholar 

  • Hammer Ø (2011) PAleontological STatistics PAST. Version 2.12. Natural History Museum. University of Oslo, Norway

    Google Scholar 

  • Hegland SJ, Boeke L (2006) Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecol Entomol. doi:10.1111/j.1365-2311.2006.00812.x

    Google Scholar 

  • Hentrich H, Kaiser R, Gottsberger G (2010) Floral biology and reproductive isolation by floral scent in three sympatric aroid species in French Guiana. Plant Biol 12:587–596. doi:10.1111/j.1438-8677.2009.00256.x

    CAS  PubMed  Google Scholar 

  • Herrera CM (1988) Variation in mutualisms: the spatiotemporal mosaic of a pollinator assemblage. Biol J Linnean Soc 35:95–125

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int. J Clim 25:1965–1978

    Article  Google Scholar 

  • Hines HM, Hendrix SD (2005) Bumble bee (Hymenoptera: Apidae) diversity and abundance in tallgrass prairie patches: Effects of local and landscape floral resources. Environ Entomol 34:1477–1484

    Article  Google Scholar 

  • Hülber K, Winkler M, Grabherr G (2010) Intraseasonal climate and habitat-specific variability controls the flowering phenology of high alpine plant species. Funct Ecol 24:245–252. doi:10.1111/j.1365-2435.2009.01645.x

    Article  Google Scholar 

  • Idarraga A, Callejas R (2011) Análisis florístico de la vegetación del departamento de Antioquia. In: Idarraga A, Ortiz CR, Callejas R, Merello M (eds) Flora de Antioquia. Catálogo de las plantas vasculares. Volumen II. Listado de las plantas vasculares del departamento de Antioquia. Programa Expedición Antioquia-2103. Series Biodiversidad y Recursos Naturales. Universidad de Antioquia, Missouri Botanical Garden & Oficina de planeación departamental de la gobernación de Antioquia, Editorial D´Vinni, Bogotá, pp 9–103

  • Idarraga A, Ortiz R, Callejas R, Merello M (2011) Flora de Antioquia. Catálogo de las plantas vasculares. Volumen II. Listado de las plantas vasculares del departamento de Antioquia. Programa Expedición Antioquia 2013. Series Biodiversidad y Recursos Naturales. Universidad de Antioquia, Mossouri Botanical Garden & oficina de Planeacion Departamental de la Gobernación de Antioquia. Editorial D’vinni, Bogotá

  • Iler AM, Inouye DW, HØye TT, Miller-Rushing AJ, Burkle LA, Johnston EB (2013) Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phonological responses to climate. Global Change Biol 19:2348–2359. doi:10.1111/gcb.12246

    Article  Google Scholar 

  • Jacquemyn H, Roberts DL, Pailler T (2005) Elevation gradients of species diversity, breeding system and floral traits of orchid species on Reunion Island. J Biogeogr 32:1751–1761

    Article  Google Scholar 

  • Janzen DH (1967) Synchronization of Sexual Reproduction of Trees Within the Dry Season in Central America. Evol Int J org Evolution 21:620–637

    Article  Google Scholar 

  • Janzen DH, Ataroff M, FarñasM, Reyes S, Tincon N, Soriano P, Vera M (1976) Changes in the arthropod community along an elevational transect in the Venezuelan Andes. Biotropica 8:193–203

    Article  Google Scholar 

  • Jørgensen PM, León-Yánez S (1999) Catalogue of the vascular plants of Ecuador. Missouri Botanical Garden Press, St. Louis

    Google Scholar 

  • Kappelle M, van Uffelen JG (2006) 4 Altitudinal zonation of Montane oak forests Along climate and soil gradients in Costa Rica. In Kapelle M (ed) Ecological Studies. Analysis and synthesis, vol 185. Springer-Verlag, Berlin Heidelberg, pp 39–50

    Google Scholar 

  • Kay KM, Schemske DW (2003) Pollinator assemblages and visitation rates for 11 species of Neotropical Costus (Costaceae). Biotropica 35:98–207

    Google Scholar 

  • Kearns CA (1992) Anthophilous fly distribution across an elevation gradient. Am Midl Nat 127:172–182

    Article  Google Scholar 

  • Kessler M (2001) Patterns of diversity and range size of selected plant groups along an elevational transect in the Bolivian Andes. Biodivers Conserv 10:1897–1921

    Article  Google Scholar 

  • Kessler M (2002) The elevational gradient of Andean plant endemism: varying influences of taxon-specific traits and topography at different taxonomic levels. J Biogeography 29:1159–1165

    Article  Google Scholar 

  • Kimball S (2008) Links between floral morphology and floral visitors along an elevational gradient in a Penstemon hybrid zone. Oikos 117:1064–1074

    Article  Google Scholar 

  • Kirk WDJ (1984) Pollen-feeding in thrips (Insecta: Thysanoptera). J Zool 204:107–117

    Article  Google Scholar 

  • Klein AM, Steffan-Dewenter I, Tscharntke T (2003) Fruit set of highland coffee increases with the diversity of pollinating bees. P Roy Soc Lond B Bio 270:955–961

    Article  Google Scholar 

  • Körner C (2000) Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol Evol 15:513–514

    Article  Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Krömer T, Kessler M, Gradstein SR, Acebey A (2005) Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. J Biogeogr 32:1799–1809

    Article  Google Scholar 

  • Krömer T, Acebey A, Kluge J, Kessler M (2013) Effects of altitude and climate in determining elevational plant species richness patterns: a case study from Los Tuxtlas, Mexico. Flora 208:197–210. doi:10.1016/j.flora.2013.03.003

    Article  Google Scholar 

  • Lambert AM, Miller-Rushing AJ, Inouye DW (2010) Changes in snowmelt date and summer precipitation affects the flowering phenology of Erythronium grandiflorum (Glacier lily; Liliaceae). Am J Bot 97:1431–1437

    Article  PubMed  Google Scholar 

  • Lande R (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:5–13

    Article  Google Scholar 

  • Ledesma-Castañeda EA (2011) Plan de manejo Reserva Natural La Mesenia-Paramillo. BSc Dissertation. Servicio Nacional de Aprendizaje SENA, Caldas, Antioquia, Colombia

  • Leimbeck RM, Valencia R, Balslev H (2004) Landscape diversity patterns and endemism of Araceae in Ecuador. Biodivers Conserv 13:1755–1779

    Article  Google Scholar 

  • Locatelli E, Machado IC (2001) Bee diversity and their floral resources in a fragment of a tropical altitudinal wet forest (“Brejos de Altitude”). In: Benedek P, Richards KW (eds) Northeastern Brazil. In: Proceeding 8th Pollination Symp. Acta Hort 561 (ISHS)

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Rafaelli D, Schmid B, Tilman D, Waedle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  CAS  PubMed  Google Scholar 

  • Mace GM, Norris K, Fitter AH (2012) Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol Evol 27:19–26

    Article  PubMed  Google Scholar 

  • Magurran AE (2004) An index of diversity. In: Magurran AE (ed) Measuring biological diversity. Blackwell Publishing, Malaysia, pp 100–130

    Google Scholar 

  • Maia ACD, Gibernau M, Carvalho AT, Gonçalves EG, Schlindwein C (2013) The cowl does not make the monk: scarab beetle pollination of the Neotropical aroid Taccarum ulei (Araceae, Spathicarpeae). Biol J Linnean Soc 108:22–34

    Article  Google Scholar 

  • Martén-Rodríguez S, Almarales-Castro A, Fenster CB (2009) Evaluation of pollination syndromes in Antillean Gesneriaceae: evidence for bat, hummingbird and generalized flowers. J Ecol 97:348–359. doi:10.1111/j.1365-2745.2008.01465.x

    Article  Google Scholar 

  • Memmot J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc Lond B 271:2605–2611

    Article  Google Scholar 

  • Molau U (1993) Relationships between flowering phenology and life history atrategies in tundra plants. Artic Alp Res 25: 391–402

    Article  Google Scholar 

  • Morellato PC, Leitao-Filho HF (1996) Reproductive phenology of climbers in a Southeastern Brazilian Forest. Biotropica 28:180–191

    Article  Google Scholar 

  • Mound LA (2005) Thysanoptera: Diversity and interactions. Annu Rev Entomol 50:247–269. doi:10.1146/annurev.ento.49.061802.123318

    Article  CAS  PubMed  Google Scholar 

  • Murcia C (2002) Ecología de la polinización. In: Guariguata MR, Kattan GH (eds) Ecología y Conservación de Bosques Neotropicales. Libro Universitario Regional, Costa Rica, pp 493–530

    Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens HM, Wagner H (2012) Community Ecology Package Version 2.3–5

  • Olesen JM, Jordano P (2002) Geographic patterns in plant—pollinator mutualistic networks. Ecology 83:2416–2424

    Google Scholar 

  • Olesen JM, Bascompte J, Elberling H, Jordano P (2008) Temporal dynamics in a pollination network. Ecology 89:1573–1582

    Article  PubMed  Google Scholar 

  • Ollerton J, Johnson SD, Hingston AB (2006) Geographical variation in diversity and specificity of pollination systems. In: Waser NM, Ollerton J (eds) Plant–pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago, pp 283–308

    Google Scholar 

  • ONU (2015) Sustainable development goals. 17 goals to transform our world. http://www.un.org/sustainabledevelopment/biodiversity/

  • Peñuelas J, Filella I, Zhang X, Llorens L, Ogaya R, Lloret F, Comas P, Estiarte M, Terradas J (2004) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 161:837–846

    Article  Google Scholar 

  • Perfecto I, Vandermeer J (2002) Quality of agroecological matrix in a tropical Montane landscape: ants in coffee plantations in southern Mexico. Conserv Biol 16:174–182

    Article  Google Scholar 

  • Perfecto I, Vandermeer J, Hansen P, Cartín V (1997) Arthropod biodiversity loss and the transformation of a tropical agro-ecosystem. Biodivers Conserv 6:935–945

    Article  Google Scholar 

  • Petanidou T, Kallimanis AS, Tzanopoulos J, Sgardelis SP, Pantis JP (2008) Long-term observation of a pollination network: Fluctuation in species and interactions, relative invariance of network structure and implications for estimates of speciation. Ecology Lett 11:564–575

    Article  Google Scholar 

  • Pinheiro F, Diniz IR, Coelho D, Bandeira MPS (2002) Seasonal pattern of insect abundance in the Brazilian Cerrado. Austral Ecol 27:132–136

    Article  Google Scholar 

  • Potts SG, Vulliamy B, Dafni A, Ne’eman G, Willmer P (2003) Linking bees and flowers: How do floral communities structure pollinator communities? Ecology 84:2628–2642

    Article  Google Scholar 

  • Pradal C, Olesen JM, Wiuf C (2009) Temporal development and collapse of an Arctic plant-pollinator network. BMC Ecol 9:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Price PW (2002) Species interactions and the evolution of biodiversity. In: Herrera CM, Pellmyr O (eds) Plant-animal interactions. An evolutionary approach, Blackwell Science Ltd, Great Britain, pp 3–25

    Google Scholar 

  • Primack RB, Inouye DW (1993) Factors affecting pollination visitation rates: A biogeographic comparison. Curr Sci 65:257–262

    Google Scholar 

  • R Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239

    Article  Google Scholar 

  • Rathcke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Annu Rev Ecol Syst 16:179–214

    Article  Google Scholar 

  • Ricketts TH (2004) Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv Biol 18:1262–1271

    Article  Google Scholar 

  • Robinson DE, Mansingh (1999) Insecticide contamination of Jamaican environment. IV. Transport of residues from coffee plantations in the blue mountains to coastal waters in eastern Jamaica. Environ Model Assess 54:125–141

    Article  CAS  Google Scholar 

  • Sannier J, Baker WJ, Anstett MC, Nadot S (2009) A comparative analysis of pollinator type and pollen ornamentation in the Araceae and the Arecaceae, two unrelated families of the monocots. BMC Res Notes 2:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwerdtfeger M, Gerlach G, Kaiser R (2002) Anthecology in the neotropical genus Anthurium (Araceae): A preliminary report. Selbyana 23:258–267

    Google Scholar 

  • Shannon, C. E., Weaver W (1962) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Silberbauer-Gottsberger I, Gottsberger G, Webber AC (2003) Morphological and functional flower characteristics of new and old World Annonaceae with respect to their mode of pollination. Taxon 52:701–718

    Article  Google Scholar 

  • Smith-Ramírez C, Armesto JJ (1994) Flowering and fruiting patterns in the temperate rainforest of Chiloe, Chile—ecologies and climatic constraints. J Ecol 82:353–365

    Article  Google Scholar 

  • Souza-Silva M, Fontenelle JCR, Martins RP (2001) Seasonal abundance and species composition of flower-visiting flies. Neotrop Entomol 30:351–359

    Article  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432–440

    Article  Google Scholar 

  • Steffan-Dewenter I, Munzenberg U, Burger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432

    Article  Google Scholar 

  • Terry I (2001) Thrips and weevil as dual, specialist pollinators of the Australian cycad Macrozamia communis (Zamiaceae). Int J Plant Sci 62:1293–1305

    Article  Google Scholar 

  • Thompson JN (1997) Conserving interaction biodiversity. In: Pickett STA, Ostfeld RS, Shachak M, Likens GE (eds) The ecological basis of conservation: heterogeneity, ecosystems, and biodiversity. Chapman & Hall, New York, pp 285–293

    Chapter  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Totland O (1994) Influence of climate, time of day, season and flower density on insect flower visitation in Alpine Norway. Arct Alp Res 26:66–71

    Article  Google Scholar 

  • Vásquez JA, Givnish TJ (1998) Altitudinal gradients in tropical forest composition, structure and diversity in the Sierra de Manatlán. J Ecol 86:999–1020

    Article  Google Scholar 

  • Vergara CH, Badano EI (2009) Pollinator diversity increases fruit production in Mexican coffee plantations: The importance of rustic management systems. Agric Ecosyst Environ 129:117–123

    Article  Google Scholar 

  • Waser NM, Ollerton J (2006) Plant–pollinator interactions: from specialization to generalization. The University of Chicago Press, Chicago

    Google Scholar 

  • Williams GA, Adam P, Mound LA (2001) Thrips (Thysanoptera) pollination in Australian subtropical rainforests, with particular reference to pollination of Wilkiea huegeliana (Monimiaceae). J Nat Hist 35:1–21

    Article  Google Scholar 

  • Willmer P (2011) Generalist flowers and generalist visitors. In: Willmer P (ed) Pollination and floral ecology. Princeton University Press, Princeton, pp 288–303

    Google Scholar 

  • Wolda H (1987) Altitude, habitat and tropical insect diversity. Biol J Linnean Soc 30:313–323

    Article  Google Scholar 

  • Wolda H (1988) Insect seasonality: why? Ann Rev Ecol Syst 19:1–18

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank, Fundacion Colibrí, Family Rendón Agudelo and Gustavo Suárez from La Mesenia (Jardin, Antioquia) for logistic support; Liliana Ramírez for field assistance. Juliana Cardona, Martha Wolff and Grupo de Entomología Universidad de Antioquia (GEUA) for identification of insects; Felipe Cardona, Alvaro Idarraga and Herbario Universidad de Antioquia (HUA) for the identification of plants. Biological diversity collecting license number 15632 June 16th 2011 (Expediente CAD2-2010-2) was granted to S Cuartas by Corporación Autónoma Regional del Centro de Antioquia—CORANTIOQUIA. S Cuartas thanks Comité para el Desarrollo de la Investigación-CODI, Universidad de Antioquia, Grant Number CPT-0915.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra E. Cuartas-Hernández.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Murillo, L., Cuartas-Hernández, S.E. Patterns of diversity of flower-visitor assemblages to the understory Araceae in a tropical mountain forest in Colombia. J Insect Conserv 20, 1069–1085 (2016). https://doi.org/10.1007/s10841-016-9945-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-016-9945-z

Keywords

Navigation