Skip to main content
Log in

Photodegradation of Rhodamine B using gallium hybrids as an efficient photocatalyst

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Keeping in view the toxicity of the Rhodamine B, the present study is designed to remediate the water loaded with toxic dyes using gallium oxide and gallium hybrids as photocatalyst. Precipitation coupled with sonochemical method is adopted for the synthesis of gallium oxide while the post grafting method is adopted for the synthesis of gallium hybrids with the indole and its derivatives. FTIR spectra showed the characteristic absorption bands of gallium oxide and gallium hybrids at 400–700 cm−1 and 1400–1600 cm−1. SEM and XRD showed the micro-sized rectangular rod-shaped gallium oxide with rhombohedral geometry. The average crystallite size of gallium hybrids was 26–32 nm calculated using the Debye Scherrer and Williamson-Hal models. The BET isotherm of gallium hybrids revealed the adsorption type-IV and hysteresis loop (H3) proposing multilayer and mesoporous structures with increase in surface area from 26 m2/g of gallium oxide to 31 m2/g of gallium-indole, 35 m2/g of gallium-methyl indole, and 37 m2/g of gallium-carboxylic indole. XPS showed the presence of gallium (3–14%), oxygen (28–32%), nitrogen (23–46%), and carbon (9–46%). The gallium oxide and gallium hybrids showed 47–72% optimum degradation of Rhodamine B under 2 h of illumination at pH 7 and 0.03 mg/L. The degradation rate followed a Langmuir-Hinshelwood model with R2 > 0.9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

(Source: Liang et al., 2020)

Similar content being viewed by others

Data availability

The author and co-authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  • Ahmed, W., Sidik, N. A. C., & Asako, Y. (2021). Metal oxide and ethylene glycol based well stable nanofluids for mass flow in closed conduit. Journal of Advanced Research in Micro and Nano Engineering, 6(1), 1–15.

    CAS  Google Scholar 

  • Alam, S., Iqbal, M. Z., & Khan, J. (2021). Green synthesis of nickel-manganese/polyaniline-based ternary composites for high-performance supercapattery devices. International Journal of Energy Research, 45(7), 11109–11122.

    CAS  Google Scholar 

  • Al-Kahtani, A. A. (2016). Photocatalytic degradation of Rhodamine B dye in wastewater using gelatin/CuS/PVA nanocomposites under solar light irradiation. Journal of Biomaterials and Nanobiotechnology, 8(01), 66.

    Google Scholar 

  • Bagheri, M., Khodadadi, A. A., Mahjoub, A. R., & Mortazavi, Y. (2013). Highly sensitive gallia-SnO2 nanocomposite sensors to CO and ethanol in presence of methane. Sensors and Actuators b: Chemical, 188, 45–52.

    CAS  Google Scholar 

  • Bagheri, M., Mahjoub, A. R., & Mehri, B. (2014). Enhanced photocatalytic degradation of congo red by solvothermally synthesized CuInSe 2–ZnO nanocomposites. RSC Advances, 4(42), 21757–21764.

    CAS  Google Scholar 

  • Banerjee, A. N., Joo, S. W., & Min, B. K. (2012). Photocatalytic degradation of organic dye by sol-gel-derived gallium-doped anatase titanium oxide nanoparticles for environmental remediation. Journal of Nanomaterials, 1–14.

  • Bang, J. H., & Suslick, K. S. (2010). Applications of ultrasound to the synthesis of nanostructured materials. Advanced Materials, 22(10), 1039–1059.

    CAS  Google Scholar 

  • Bharat, L. K., Nagaraju, G., Krishna, K. G., & Yu, J. S. (2016). Controlled synthesis of yttrium gallium garnet spherical nanostructures modified by silver oxide nanoparticles for enhanced photocatalytic properties. CrystEngComm, 18(46), 8915–8925.

    CAS  Google Scholar 

  • Colombo, E., Li, W., Bhangu, S. K., & Ashokkumar, M. (2017). Chitosan microspheres as a template for TiO 2 and ZnO microparticles: Studies on the mechanism, functionalization and applications in photocatalysis and H2S removal. RSC Advances, 7(31), 19373–19383.

    CAS  Google Scholar 

  • Costa, M. B. G., Juárez, J. M., Martínez, M. L., Cussa, J., & Anunziata, O. A. (2012). Synthesis and characterization of a novel composite: Polyindole included in nanostructured Al-MCM-41 material. Microporous and Mesoporous Materials, 153, 191–197.

    Google Scholar 

  • Daneshvar, E., Kousha, M., Jokar, M., Koutahzadeh, N., & Guibal, E. (2012). Acidic dye biosorption onto marine brown macroalgae: Isotherms, kinetic and thermodynamic studies. Chemical Engineering Journal, 204, 225–234.

    Google Scholar 

  • Das, B., Das, B., Das, N. S., Sarkar, S., & Chattopadhyay, K. K. (2019). Tailored mesoporous nanocrystalline Ga2O3 for dye-selective photocatalytic degradation. Microporous and Mesoporous Materials, 288, 109600.

    CAS  Google Scholar 

  • Devaraju, S., Vengatesan, M. R., Selvi, M., Song, J. K., & Alagar, M. (2013). Mesoporous silica-reinforced cyanate ester nanocomposites for low k dielectric applications. Microporous and Mesoporous Materials, 179, 157–164.

    CAS  Google Scholar 

  • Fernández, L. G., Cravero, F., Sánchez, M. P., De la Cruz Vivanco, C., & Gatti, M. (2015). Synthesis and characterization of vinyltrimethoxysilane-grafted non-swelling clay. Procedia Materials Science, 8, 414–423.

    Google Scholar 

  • Girija, K., Thirumalairajan, S., Mastelaro, V. R., & Mangalaraj, D. (2015). Photocatalytic degradation of organic pollutants by shape-selective synthesis of β-Ga2O3 microspheres constituted by nanospheres for environmental remediation. Journal of Materials Chemistry A, 3(6), 2617–2627.

    CAS  Google Scholar 

  • Guzmán, G., Herrera, M., Silva, R., Vásquez, G. C., & Maestre, D. (2016). Influence of oxygen incorporation on the defect structure of GaN micro rods and nanowires. An XPS and CL study. Semiconductor Science and Technology31(5), 055006.

  • Hariprasad, N., Anju, S. G., & Yesodharan, E. P. (2013). Sunlight induced removal of Rhodamine B from water through semiconductor photocatalysis: Effects of adsorption, reaction conditions and additives. Research Journal of Material Sciences, 2320, 6055.

    Google Scholar 

  • Iqbal, M. Z., Katsiotis, M. S., Alhassan, S. M., Liberatore, M. W., & Abdala, A. A. (2014). Effect of solvent on the uncatalyzed synthesis of aminosilane-functionalized graphene. RSC Advances, 4(13), 6830–6839.

    CAS  Google Scholar 

  • Joshi, L., & Prakash, R. (2012). Polyindole-Au nanocomposite produced at the liquid/liquid interface. Materials Letters, 66(1), 250–253.

    CAS  Google Scholar 

  • Joshi, L., Singh, A. K., & Prakash, R. (2012). Polyindole/carboxylated-multiwall carbon nanotube composites produced by in-situ and interfacial polymerization. Materials Chemistry and Physics, 135(1), 80–87.

    CAS  Google Scholar 

  • Kamil, A. M., Mohammed, H. T., Balakit, A. A., Hussein, F. H., Bahnemann, D. W., & El-Hiti, G. A. (2018). Synthesis, characterization and photocatalytic activity of carbon nanotube/titanium dioxide nanocomposites. Arabian Journal for Science and Engineering, 43(1), 199–210.

    CAS  Google Scholar 

  • Kang, B. K., Lim, G. H., Lim, B., & Yoon, D. H. (2016). Morphology controllable synthesis and characterization of gallium compound hierarchical structures via forced-hydrolysis method. Journal of Alloys and Compounds, 675, 57–63.

    CAS  Google Scholar 

  • Kang, B. K., Lim, H. D., Mang, S. R., Song, K. M., Jung, M. K., Kim, S. W., & Yoon, D. (2015). Synthesis and characterization of monodispersed β-Ga2O3 nanospheres via morphology controlled Ga4(OH).10SO4 precursors. Langmuir, 31(2), 833–838.

  • Kansal, S. K., Kaur, N., & Singh, S. (2009). Photocatalytic degradation of two commercial reactive dyes in aqueous phase using nanophotocatalysts. Nanoscale Research Letters, 4(7), 709.

    CAS  Google Scholar 

  • Kim, S., Han, K. I., Lee, I. G., Park, W. K., Yoon, Y., Yoo, C. S., ... & Hwang, W. S. (2016). A gallium oxide-graphene oxide hybrid composite for enhanced photocatalytic reaction. Nanomaterials6(7), 127.

  • Kim, H., & Kwon, J. Y. (2017). Enzyme immobilization on metal oxide semiconductors exploiting amine functionalized layer. RSC Advances, 7(32), 19656–19661.

    CAS  Google Scholar 

  • Kumar, K. V., Porkodi, K., & Selvaganapathi, A. (2007). Constrain in solving Langmuir-Hinshelwood kinetic expression for the photocatalytic degradation of auramine O aqueous solutions by ZnO catalyst. Dyes and Pigments, 75(1), 246–249.

    CAS  Google Scholar 

  • Kumar, K. V., Porkodi, K., & Rocha, A. F. (2008). Langmuir-Hinshelwood kinetics–A theoretical study. Catalysis Communications, 9(1), 82–84.

    CAS  Google Scholar 

  • Kumar, V. B., Gedanken, A., & Porat, Z. E. (2015). Facile synthesis of gallium oxide hydroxide by ultrasonic irradiation of molten gallium in water. Ultrasonics Sonochemistry, 26, 340–344.

    CAS  Google Scholar 

  • Li, L., Wei, W., & Behrens, M. (2012). Synthesis and characterization of α-, β-, and γ-Ga2O3 prepared from aqueous solutions by controlled precipitation. Solid State Sciences, 14(7), 971–981.

    CAS  Google Scholar 

  • Liang, L., Cheng, L., Zhang, Y., Wang, Q., Wu, Q., Xue, Y., & Meng, X. (2020). Efficiency and mechanisms of rhodamine B degradation in Fenton-like systems based on zero-valent iron. RSC Advances, 10(48), 28509–28515.

    CAS  Google Scholar 

  • Ling, S. K., Wang, S., & Peng, Y. (2010). Oxidative degradation of dyes in water using Co+2/H2O2 and Co+2/peroxymonosulfate. Journal of Hazardous Materials, 178(1–3), 385–389.

    CAS  Google Scholar 

  • Liu, B. H., Dou, L. T., He, F., Yang, J., & Li, Z. P. (2016). A cobalt coordination compound with indole acetic acid for fabrication of a high performance cathode catalyst in fuel cells. RSC Advances, 6(23), 19025–19033.

    CAS  Google Scholar 

  • Nagaraja, R., Kottam, N., Girija, C. R., & Nagabhushana, B. M. (2012). Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technology, 215, 91–97.

    Google Scholar 

  • Parveen, K., Rafique, U., Akhtar, M. J., & Ashokumar, M. (2018). Ultrasound-assisted synthesis of gallium hybrids for environmental remediation application. Ultrasonics Sonochemistry, 49, 222–232.

    CAS  Google Scholar 

  • Pengthamkeerati, P., Satapanajaru, T., & Singchan, O. (2008). Sorption of reactive dye from aqueous solution on biomass fly ash. Journal of Hazardous Materials, 153(3), 1149–1156.

    CAS  Google Scholar 

  • Reddy, L. S., Ko, Y. H., & Yu, J. S. (2015). Hydrothermal synthesis and photocatalytic property of β-Ga2O3 nanorods. Nanoscale Research Letters, 10(1), 1–7.

    Google Scholar 

  • Reheman, A., Tursun, Y., Dilinuer, T., Halidan, M., Kadeer, K., & Abulizi, A. (2018). Facile one-step sonochemical synthesis and photocatalytic properties of graphene/Ag3PO4 quantum dots composites. Nanoscale Research Letters, 13(1), 1–10.

    CAS  Google Scholar 

  • Sarkar, S., & Sampath, S. (2016). Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control. Chemical Communications, 52(38), 6407–6410.

    CAS  Google Scholar 

  • Shan, J. J., Li, C. H., Wu, J. M., Liu, J. A., & Shi, Y. S. (2017). Shape-controlled synthesis of monodispersed beta-gallium oxide crystals by a simple precipitation technique. Ceramics International, 43(8), 6430–6436.

    CAS  Google Scholar 

  • Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603–619.

    CAS  Google Scholar 

  • Stepanov, S., Nikolaev, E. V., Bougrov, V., & Romanov, A. (2016). Gallium oxide: Properties and applica a review. Reviews on Advanced Materials Science, 44, 63–86.

    CAS  Google Scholar 

  • Tanhaei, M., Mahjoub, A. R., & Safarifard, V. (2019). Energy-efficient sonochemical approach for the preparation of nanohybrid composites from graphene oxide and metal-organic framework. Inorganic Chemistry Communications, 102, 185–191.

    CAS  Google Scholar 

  • Trivedi, M., Tallapragada, R. M., Branton, A., Trivedi, D., Nayak, G., Mishra, R. K., & Jana, S. (2015). Biofield treatment: A potential strategy for modification of physical and thermal properties of indole. Environmental Analytical Chemistry4(2).

  • Tsay, C. Y., Fan, K. S., & Lei, C. M. (2012). Synthesis and characterization of sol–gel derived gallium-doped zinc oxide thin films. Journal of Alloys and Compounds, 512(1), 216–222.

    CAS  Google Scholar 

  • Wang, Q., Chen, P., Zeng, X., Jiang, H., Meng, F., Li, X., ... & Luo, X. (2020). Synthesis of (ZrO2-Al2O3)/GO nanocomposite by sonochemical method and the mechanism analysis of its high defluoridation. Journal of Hazardous Materials381, 120954.

  • Wang, S. (2008). A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes and Pigments, 76(3), 714–720.

    CAS  Google Scholar 

  • Xie, R., Fang, K., Liu, Y., Chen, W., Fan, J., Wang, X., ... & Song, Y. (2020). Z-scheme In 2 O 3/WO 3 heterogeneous photocatalysts with enhanced visible-light-driven photocatalytic activity toward degradation of organic dyes. Journal of Materials Science55, 11919–11937.

  • Yang, J. J., Zhao, Y., & Frost, R. L. (2009). Infrared and infrared emission spectroscopy of gallium oxide α-GaO (OH) nanostructures. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 74(2), 398–403.

    Google Scholar 

  • Yu, B., Wang, X., Xing, W., Yang, H., Wang, X., Song, L., ... & Lo, S. (2013). Enhanced thermal and mechanical properties of functionalized graphene/thiol-ene systems by photopolymerization technology. Chemical Engineering Journal228, 318–326.

  • Zhao, Y., Frost, R. L., & Martens, W. N. (2007). Synthesis and characterization of gallium oxide nanostructures via a soft-chemistry route. The Journal of Physical Chemistry C, 111(44), 16290–16299.

    CAS  Google Scholar 

  • Zhou, Y., Zhang, L., Liu, J., Fan, X., Wang, B., Wang, M., ... & Shi, J. (2015). Brand new P-doped gC 3 N 4: Enhanced photocatalytic activity for H 2 evolution and Rhodamine B degradation under visible light. Journal of Materials Chemistry A3(7), 3862–3867.

Download references

Funding

This research work was supported by the applied chemistry lab at Fatima Jinnah Women University, The Mall Rawalpindi.

Author information

Authors and Affiliations

Authors

Contributions

Kousar Parveen: investigation, methodologies, formal analysis, writing—original draft, and preparation; Uzaira Rafique: conceptualization, supervision, and visualization; Ishrat Jamil: validation and editing. Anam Ashraf: draft preparation and review.

Corresponding author

Correspondence to Kousar Parveen.

Ethics declarations

Ethics approval

All authors have read and understood and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 334 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parveen, K., Rafique, U., Jamil, I. et al. Photodegradation of Rhodamine B using gallium hybrids as an efficient photocatalyst. Environ Monit Assess 195, 1106 (2023). https://doi.org/10.1007/s10661-023-11683-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11683-y

Keywords

Navigation