Skip to main content

Advertisement

Log in

An integrated groundwater resource management approach for sustainable development in a tropical river basin, southern India

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Evaluation of aquifer potential is essential, as the potable water demand has increased globally over the last few decades. The present study delineated different zones of groundwater potential and groundwater quality of the Kallada River basin (KRB) in southern India, using geo-environmental and hydrogeochemical parameters, respectively. Geo-environmental variables considered include relative relief, land use/land cover, drainage density, slope angle, geomorphology, and geology, while hydrogeochemical parameters include pH, electrical conductivity (EC), Cl, Fe3+, and Al3+ concentrations. Analytical hierarchy process (AHP) was used for categorizing groundwater potential and quality zones. Nearly 50% of KRB is categorized as very high and high groundwater potential zones, occupying the western and midland regions. The central and west-central parts of KRB are characterized by excellent groundwater quality zones, while the eastern and western parts are characterized by good and poor groundwater quality zones, respectively. By integrating the groundwater potential and groundwater quality, sustainable groundwater management is observed to be necessary at about 54% of the basin, where site-specific groundwater management structures such as percolation ponds, injection wells, and roof water harvesting have been proposed using a rule-based approach. This integrated groundwater potential-groundwater quality approach helps policymakers to implement the most suitable management strategies with maximum performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

Data will be available upon a direct request to corresponding author.

References

  • Achu, A. L., Reghunath, R., & Thomas, J. (2020a). Mapping of groundwater recharge potential zones and identification of suitable site-specific recharge mechanisms in a tropical river basin. Earth Systems and Environment, 4(1), 131–145. https://doi.org/10.1007/s41748-019-00138-5

    Article  Google Scholar 

  • Achu, A. L., Thomas, J., & Reghunath, R. (2020b). Multi-criteria decision analysis for delineation of groundwater potential zones in a tropical river basin using remote sensing, GIS and analytical hierarchy process (AHP). Groundwater for Sustainable Development10, 100365. https://doi.org/10.1016/j.gsd.2020.100365

  • Ahmad, I., Hasan, H., Jilani, M. M., et al. (2023). Mapping potential groundwater accumulation zones for Karachi city using GIS and AHP techniques. Environmental Monitoring and Assessment, 195, 381.

    Article  Google Scholar 

  • Aju, C. D., Achu, A. L., Pranav, P., & Rajesh, R. (2022). Neotectonics assessment using geomorphic indices: A study from the passive continental margin of India. Geology Ecology and Landscapes, 1–16.

  • Aju, C. D., Achu, A. L., Raicy, M. C., & Reghunath, R. (2021). Identification of suitable sites and structures for artificial groundwater recharge for sustainable water resources management in Vamanapuram River basin, South India. Hydrological Research, 4, 24–37. https://doi.org/10.1016/j.hydres.2021.04.001

    Article  Google Scholar 

  • Aju, C. D., Reghunath, R., Prasannakumar, V., et al. (2019). Terrain characteristics and their influence on the temporal behaviour of hydraulic heads in Kallada River basin. Kerala. Journal of the Geological Society of India, 93, 61–67. https://doi.org/10.1007/s12594-019-1123-y

    Article  Google Scholar 

  • Al Saud, M. (2010). Mapping potential areas for groundwater storage in Wadi Aurnah basin, western Arabian Peninsula, using remote sensing and geographic information system techniques. Hydrogeology Journal, 18(6), 1481–1495. https://doi.org/10.1007/s10040-010-0598-9

    Article  Google Scholar 

  • Allafta, H., Opp, C., & Patra, S. (2020). Identification of groundwater potential zones using remote sensing and GIS techniques: A case study of the Shatt Al-Arab basin. Remote Sensing, 13(1), 112. https://doi.org/10.3390/rs13010112

    Article  Google Scholar 

  • APHA. (1992). Standard methods for the examination of water and wastewater. American Public Health Association.

    Google Scholar 

  • Appukuttan, A., & Reghunath, R. (2022). Identification of groundwater potential zones in a tropical lateritic terrain by analytical hierarchy process-based multi-criteria analysis and geospatial technology. Arabian Journal of Geosciences, 15, 1323. https://doi.org/10.1007/s12517-022-10587-4

    Article  Google Scholar 

  • Arabi Aliabad, F., Shojaei, S., Zare, M. et al. (2019). Assessment of the fuzzy ARTMAP neural network method performance in geological mapping using satellite images and Boolean logic. International Journal of Environmental Science and Technology, 16, 3829–3838. https://doi.org/10.1007/s13762-018-1795-7

  • Arshad, A., Zhang, Z., Zhang, W., & Dilawar, A. (2020). Mapping favorable groundwater potential recharge zones using a GIS-based analytical hierarchical process and probability frequency ratio model: A case study from an agro-urban region of Pakistan. Geoscience Frontiers, 11, 1805–1819.

    Article  Google Scholar 

  • Arulbalaji, P., Padmalal, D., & Sreelash, K. (2019). GIS and AHP techniques based delineation of groundwater potential zones: A case study from southern Western Ghats. India. Scientific Reports, 9(1), 1–17. https://doi.org/10.1038/s41598-019-38567-x

    Article  CAS  Google Scholar 

  • Asgher, M. S., Kumar, N., Kumari, M., et al. (2022). Groundwater potential mapping of Tawi River basin of Jammu District, India, using geospatial techniques. Environmental Monitoring and Assessment, 194, 240.

    Article  Google Scholar 

  • Asoka, A., Gleeson, T., Wada, Y., & Mishra, V. (2017). Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nature Geoscience, 10(2), 109–117. https://doi.org/10.1038/ngeo2869

    Article  CAS  Google Scholar 

  • Badeenezhad, A., Tabatabaee, H. R., Nikbakht, H. A., Radfard, M., Abbasnia, A., Baghapour, M. A., & Alhamd, M. (2020). Estimation of the groundwater quality index and investigation of the affecting factors their changes in Shiraz drinking groundwater, Iran. Groundwater for Sustainable Development11. https://doi.org/10.1016/j.gsd.2020.100435

  • Basavarajappa, H. T., Dinakar, S., & Manjunatha, M. C. (2016). Validation of derived groundwater potential zones (GWPZ) using geo-informatics and actual yield from well points in parts of upper Cauvery basin of Mysuru and Chamarajanagara Districts. Karntaka, India, International Journal of Civil Engineering and Technology, 7(1), 141–161.

    Google Scholar 

  • Brindha, K., & Elango, L. (2012). Groundwater quality zonation in a shallow weathered rock aquifer using GIS. Geo-Spatial Information Science, 15(2), 95–104. https://doi.org/10.1080/10095020.2012.714655

    Article  Google Scholar 

  • CGWB. (2007). Manual on artificial recharge of groundwater. Government of India.

  • CGWB. (2013). Groundwater information booklet of Kollam district, Kerala state.

  • CGWB. (2019). National compilation on dynamic ground water resources of India. Faridabad, India: Central Ground Water Board. 298.

  • Chakrapani, R., India, W., & Samithi, C. P. S. (2014). Domestic water and sanitation in Kerala: A situation analysis. Pune: Forum for Policy Dialogue on Water Conflicts in India.

  • Chatterjee, S., & Dutta, S. (2022). Assessment of groundwater potential zone for sustainable water resource management in south-western part of Birbhum District. West Bengal. Applied Water Science, 12(3), 1–16. https://doi.org/10.1007/s13201-021-01549-4

    Article  Google Scholar 

  • Chithra, S., Joseph, S., & Kannan, N. (2022). A study of saltwater intrusion in the Kallada River, southwest coast of Kerala. India. Water Supply, 22(2), 2194–2211. https://doi.org/10.2166/ws.2021.367

    Article  CAS  Google Scholar 

  • Chowdary, V. M., Chakraborthy, D., Jeyaram, A., Krishna Murthy, Y. V. N., Sharma, J. R., & Dadhwal, V. K. (2013). Multi-criteria decision making approach for watershed prioritization using analytic hierarchy process technique and GIS. Water Resources Management, 27, 3555–3571.

    Article  Google Scholar 

  • Chowdhury, A., Jha, M. K., Chowdary, V. M., & Mal, B. C. (2009). Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal. India. International Journal of Remote Sensing, 30(1), 231–250. https://doi.org/10.1080/01431160802270131

    Article  Google Scholar 

  • Comte, J. C., Ofterdinger, U., Legchenko, A., Caulfield, J., Cassidy, R., & Mézquita González, J. A. (2019). Catchment-scale heterogeneity of flow and storage properties in a weathered/fractured hard rock aquifer from resistivity and magnetic resonance surveys: Implications for groundwater flow paths and the distribution of residence times. Geological Society, London. Special Publications. V, 479, 35–58.

    Article  Google Scholar 

  • Dillon, P. (2005). Future management of aquifer recharge. Hydrogeology Journal, 13(1), 313–316. https://doi.org/10.1007/s10040-004-0413-6

    Article  Google Scholar 

  • Dinesh Kumar, P. K., Gopinath, G., & Seralathan, P. (2007). Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. International Journal of Remote Sensing, 28(24), 5583–5601.

    Article  Google Scholar 

  • El-Hames, A. S., Hannachi, A., Al-Ahmadi, M., & Al-Amri, N. (2013). Groundwater quality zonation assessment using GIS, EOFs and hierarchical clustering. Water Resources Management, 27(7), 2465–2481. https://doi.org/10.1007/s11269-013-0297-0

    Article  Google Scholar 

  • Farhat, B., Souissi, D., Mahfoudhi, R., et al. (2023). GIS-based multi-criteria decision-making techniques and analytical hierarchical process for delineation of groundwater potential. Environmental Monitoring and Assessment, 195, 285. https://doi.org/10.1007/s10661-022-10845-8

    Article  Google Scholar 

  • Geological survey of India. (2006). Maps.

    Google Scholar 

  • Ghimire, M., Chapagain, P. S., & Shrestha, S. (2019). Mapping of groundwater spring potential zone using geospatial techniques in the Central Nepal Himalayas: A case example of Melamchi-Larke area. Journal of Earth System Science, 128(2), 1–24. https://doi.org/10.1007/s12040-018-1048-7

    Article  Google Scholar 

  • Ghosh, D., Ghorai, P., & Dutta, S. (2022). Comparative analysis of water supply systems in megacities in developed and developing countries. In Current Directions in Water Scarcity Research, 6, 65–83. Elsevier. https://doi.org/10.1016/B978-0-323-91838-1.00007-5

  • Guduru, J. U., & Jilo, N. B. (2022). Groundwater potential zone assessment using integrated analytical hierarchy process-geospatial driven in a GIS environment in Gobele watershed, Wabe Shebele river basin. Ethiopia. Journal of Hydrology: Regional Studies, 44, 101218.

    Google Scholar 

  • Guru, B., Seshan, K., & Bera, S. (2017). Frequency ratio model for groundwater potential mapping and its sustainable management in cold desert. India. Journal of King Saud University-Science, 29(3), 333–347. https://doi.org/10.1016/j.jksus.2016.08.003

    Article  Google Scholar 

  • Hima Hari, U. (2015). Urbanization in Kerala-trends and consequences. Indian Journal of Applied Research, 5, 455–457.

    Google Scholar 

  • Hobbs, W. H. (1904). Lineaments of the Atlantic border region. Geological Society of America Bulletin, 15(1), 483–506. https://doi.org/10.1130/GSAB-15-483

    Article  Google Scholar 

  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275–370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2

    Article  Google Scholar 

  • Margat, J., & Van der Gun, J. (2013). Groundwater around the world: A geographic synopsis. Crc Press.

  • Mishra, V., & Shah, H. L. (2018). Hydroclimatological perspective of the Kerala flood of 2018. Journal of the Geological Society of India, 92(5), 645–650. https://doi.org/10.1007/s12594-018-1079-3

    Article  Google Scholar 

  • Mishra, V., Cherkauer, K. A., Niyogi, D., Lei, M., Pijanowski, B. C., Ray, D. K., & Yang, G. (2010). A regional scale assessment of land use/land cover and climatic changes on water and energy cycle in the upper Midwest United States. Internatonal Journal Climatology. https://doi.org/10.1002/joc.2095

  • Mogaji, K. A., Lim, H. S., & Abdullah, K. (2015). Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster-Shafer model. Arabian Journal of Geosciences, 8(5), 3235–3258. https://doi.org/10.1007/s12517-014-1391-1

    Article  Google Scholar 

  • Mpofu, M., Madi, K., & Gwavava, O. (2020). Remote sensing, geological, and geophysical investigation in the area of Ndlambe Municipality, Eastern Cape Province, South Africa: Implications for groundwater potential. Groundwater for Sustainable Development, 11, 100431.

    Article  Google Scholar 

  • Mugo, G. M., & Odera, P. A. (2019). Site selection for rainwater harvesting structures in Kiambu County-Kenya. The Egyptian Journal of Remote Sensing and Space Science, 22(2), 155–164. https://doi.org/10.1016/j.ejrs.2018.05.003

    Article  Google Scholar 

  • Nair, H. C., Padmalal, D., Joseph, A., et al. (2017). Delineation of groundwater potential zones in river basins using geospatial tools—an example from southern Western Ghats, Kerala. Journal of Geovisualization and Spatial Analysis, 1, 5.

    Article  Google Scholar 

  • Nguyen, P. T., Ha, D. H., Avand, M., Jaafari, A., Nguyen, H. D., Van Phong, T., Sharma, R., Kumar, R., Le, H. V., Ho, L. S., Prakash, I., & Pham, B. T. (2020). Soft computing ensemble models based on logistic regression for groundwater potential mapping. Applied Sciences, 10(7), 2469.

    Article  CAS  Google Scholar 

  • Nguyen, A. H., Pham, N. T. T., Tat, V. M. H., Truong, H. T., & Vo, P. L. (2021). Application of entropy weight in groundwater quality index (EWQI) and GIS for groundwater quality zoning in the Southeastern Coastal region, Vietnam. In IOP Conference Series: Earth and Environmental Science. 652, 012005.

  • Niti Aayog, Government of India. (2018). Composite water management index: A tool for water management. http://www.niti.gov.in/writereaddata/files/document_publication/2018-05-18-Water-Index-Report_vS8-compressed.pdf

  • Ozdemir, A. (2011). GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. Journal of Hydrology, 411(3–4), 290–308. https://doi.org/10.1016/j.jhydrol.2011.10.010

    Article  Google Scholar 

  • Patiño-Rojas, S. M., Jaramillo, M., Espinosa-Espinosa, C., & Arias-Lopez, M. F. (2021). Preferential groundwater flow directions in a pseudokarst system in Colombia, South America. Journal of South American Earth Sciences, 112, 103572.

    Article  Google Scholar 

  • Pourghasemi, H. R., & Beheshtirad, M. (2015). Assessment of a data-driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed. Iran. Geocarto International, 30(6), 662–685. https://doi.org/10.1080/10106049.2014.966161

    Article  Google Scholar 

  • Pourtaghi, Z. S., & Pourghasemi, H. R. (2014). GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province. Iran. Hydrogeology Journal, 22(3), 643–662. https://doi.org/10.1007/s10040-013-1089-6

    Article  Google Scholar 

  • Preeja, K. R., Joseph, S., Thomas, J., & Vijith, H. (2011). Identification of groundwater potential zones of a tropical river basin (Kerala, India) using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 39(1), 83–94.

    Article  Google Scholar 

  • Putra, A. S., & Fatrilia, R. R. (2020). Paradigma belajar mengaji secara online pada masa Pandemic Coronavirus Disease 2019 (Covid- 19). MATAAZIR: Jurnal Administrasi dan Manajemen Pendidikan, 1, 49–61.

    Google Scholar 

  • Rahmati, O., Nazari Samani, A., Mahdavi, M., Pourghasemi, H. R., & Zeinivand, H. (2015). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8(9), 7059–7071. https://doi.org/10.1007/s12517-014-1668-4

    Article  Google Scholar 

  • Rahmati, O., Pourghasemi, H. R., & Melesse, A. M. (2016). Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena, 137, 360–372. https://doi.org/10.1016/j.catena.2015.10.010

    Article  Google Scholar 

  • Raicy, M. C., & Elango, L. (2020). Percolation pond with recharge shaft as a method of managed aquifer recharge for improving the groundwater quality in the saline coastal aquifer. Journal of Earth System Science, 129, 63. https://doi.org/10.1007/s12040-019-1333-0

    Article  CAS  Google Scholar 

  • Rajasekhar, M., Raju, G. S., Sreenivasulu, Y., & Raju, R. S. (2019). Delineation of groundwater potential zones in semi-arid region of Jilledubanderu river basin, Anantapur District, Andhra Pradesh, India using fuzzy logic, AHP and integrated fuzzy-AHP approaches. Hydrological Research, 2, 97–108. https://doi.org/10.1016/j.hydres.2019.11.006

    Article  Google Scholar 

  • Rajasekhar, M., Upendra, B., & Raju, G. S. (2022). Identification of groundwater potential zones in southern India using geospatial and decision-making approaches. Applied Water Science, 12(4), 1–16. https://doi.org/10.1007/s13201-022-01603-9

    Article  Google Scholar 

  • Razandi, Y., Pourghasemi, H. R., Neisani, N. S., & Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8(4), 867–883. https://doi.org/10.1007/s12145-015-0220-8

    Article  Google Scholar 

  • Ricolfi, L., Barbieri, M., Muteto, P. V., et al. (2020). Potential toxic elements in groundwater and their health risk assessment in drinking water of Limpopo National Park, Gaza Province. Southern Mozambique. Environmental Geochemistry and Health, 42, 2733–2745.

    Article  CAS  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Saaty, T. L. (1990). An exposition of the AHP in reply to the paper “Remarks on the analytic hierarchy process.” Management Science, 36(3), 259–268.

    Article  Google Scholar 

  • Saaty, T. L., & Kearns, K. P. (1985). Analytic planning: The organization of systems. International Series in Modern Applied Mathematics and Computer Science, 7.

  • Shaji, E., Vinayachandran, N., & Thambi, D. S. (2009). Hydrogeochemical characteristics of groundwater in coastal phreatic aquifers of Alleppey district, Kerala. Journal of the Geological Society of India, 74(5), 585–590. https://doi.org/10.1007/s12594-009-0172-z

    Article  CAS  Google Scholar 

  • Subba Rao, N. (2009). Fluoride in groundwater, Varaha River Basin Visakhapatnam District, Andhra Pradesh, India. Environmental Monitoring and Assessment, 152(1–4), 47–60. https://doi.org/10.1007/s10661-008-0295-5

    Article  CAS  Google Scholar 

  • Suganthi, S., Elango, L., & Subramanian, S. K. (2013). Groundwater potential zonation by remote sensing and GIS techniques and its relation to the groundwater level in the coastal part of the Arani and Koratalai River basin, southern India. Earth Sciences Research Journal, 17(2), 87–95.

    Google Scholar 

  • Swetha, T. V., Gopinath, G., Thrivikramji, K. P., et al. (2017). Geospatial and MCDM tool mix for identification of potential groundwater prospects in a tropical river basin. Kerala. Environmental Earth Science, 76, 428.

    Article  Google Scholar 

  • Thampi, P. K. (1987). Geology of Munnar granite, Idukki district, Kerala, India. Thesis (PhD), University of Kerala.

  • Thomas, J., & Prasannakumar, V. (2016). Temporal analysis of rainfall (1871–2012) and drought characteristics over a tropical monsoon-dominated State (Kerala) of India. Journal of Hydrology, 534, 266–280. https://doi.org/10.1016/j.jhydrol.2016.01.013

    Article  Google Scholar 

  • Thornbury, W. D. (1990). Principle of geomorphology. Wiley Eastern Limited, New Delhi, 594.

  • Trivedy, R. K., & Geol, P. K. (1986). Chemical and biological methods for waste pollution studies (pp. 35–96). Environ Publ.

    Google Scholar 

  • Uc Castillo, J. L., Martínez Cruz, D. A., Ramos Leal, J. A., Tuxpan Vargas, J., Rodríguez Tapia, S. A., & Marín Celestino, A. E. (2022). Delineation of groundwater potential zones (GWPZs) in a semi-arid basin through remote sensing, GIS, and AHP approaches. Water, 14(13), 2138. https://doi.org/10.3390/w14132138

    Article  CAS  Google Scholar 

  • UNICEF. (2012). Ministry of drinking water and sanitation government of India. (2012). Sanitation and Hygiene Advocacy and Communication Strategy Framework, 2017.

  • Vijith, H. (2007). Groundwater potential in the hard rock terrain of western ghats: A case study from Kottayam district, Kerala using resourcesat (IRS-P6) data and GIS techniques. Journal of the Indian Society of Remote Sensing, 35, 163–171.

    Article  Google Scholar 

  • Vikas, C. (2009). Tectonic evolution of Achankovil Shear Zone. University of Kerala, Kerala, India.

    Google Scholar 

  • Wang, Z., Wei, X., Yang, J., Suo, J., Chen, J., Liu, X., & Zhao, X. (2016). Chronic exposure to aluminum and risk of Alzheimer’s disease: A meta-analysis. Neuroscience Letters, 610, 200–206. https://doi.org/10.1016/j.neulet.2015.11.014

    Article  CAS  Google Scholar 

  • World Bank. (2005). World development report 2006: Equity and development. The World Bank.

  • Yeh, H. F., Cheng, Y. S., Lin, H. I., & Lee, C. H. (2016). Mapping groundwater recharge potential zone using a GIS approach in Hualian River. Taiwan. Sustainable Environment Research, 26(1), 33–43. https://doi.org/10.1016/j.serj.2015.09.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out at the Department of Geology, Karyavattom campus, University of Kerala. The authors thank the Kerala State Planning Board for funding (Grant no.: 1125/2013/H.Edn/10/06/2013). The first author also thanks to the University of Kerala for research fellowship and acknowledges the Erasmus Mundus exchange fellowship provided by the Impakt program of the European Union.

Funding

Kerala State Planning Board for funding (Grant no.: 1125/2013/H.Edn/10/06/2013).

Author information

Authors and Affiliations

Authors

Contributions

Aju C D: conceptualization, methodology, data analysis, and manuscript writing; A L Achu: methodology, data analysis, and manuscript writing; Pranav Prakash: data analysis; Rajesh Reghunath: manuscript correction and reviewing; Raicy M C: manuscript correction and reviewing.

Corresponding author

Correspondence to AL Achu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aju, C., Achu, A., Prakash, P. et al. An integrated groundwater resource management approach for sustainable development in a tropical river basin, southern India. Environ Monit Assess 195, 1129 (2023). https://doi.org/10.1007/s10661-023-11682-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11682-z

Keywords

Navigation