Skip to main content

Advertisement

Log in

GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran

Evaluation de la potentialité des sources d’eau souterraine à partir d’un SIG et cartographie dans le district de Birjand, Sud de la province de Khorasan, Iran

Evaluación del potencial de manantiales de agua subterránea basado en GIS y mapeo en el Birjand Township, sur de la provincia de Khorasan, Irán

伊朗Khorasan省南部Birjand镇基于GIS的地下水泉潜力评价和编图

Avaliação e mapeamento do potencial em nascentes de água subterrânea com base em SIG no município de Birjand, sul da Província de Khorasan, Irão

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Three statistical models—frequency ratio (FR), weights-of-evidence (WofE) and logistic regression (LR)—produced groundwater-spring potential maps for the Birjand Township, southern Khorasan Province, Iran. In total, 304 springs were identified in a field survey and mapped in a geographic information system (GIS), out of which 212 spring locations were randomly selected to be modeled and the remaining 92 were used for the model evaluation. The effective factors—slope angle, slope aspect, elevation, topographic wetness index (TWI), stream power index (SPI), slope length (LS), plan curvature, lithology, land use, and distance to river, road, fault—were derived from the spatial database. Using these effective factors, groundwater spring potential was calculated using the three models, and the results were plotted in ArcGIS. The receiver operating characteristic (ROC) curves were drawn for spring potential maps and the area under the curve (AUC) was computed. The final results indicated that the FR model (AUC = 79.38 %) performed better than the WofE (AUC = 75.69 %) and LR (AUC = 63.71 %) models. Sensitivity and factor analyses concluded that the bivariate statistical index model (i.e. FR) can be used as a simple tool in the assessment of groundwater spring potential when a sufficient number of data are obtained.

Résumé

Trois modèles statistiques—rapport de fréquence (RF), poids d’évidence (PdE) et régression logique (RL)—ont permis de produire des cartes de potentialité des sources d’eau souterraine pour le district de Birjand, dans le Sud de la province de Khorasan en Iran. Au total 304 sources ont été identifiées lors d’une reconnaissance de terrain et cartographiées à l’aide d’un système d’information géographique (SIG), parmi lesquelles 212 locations de sources ont été sélectionnées de manière aléatoire pour être modélisées et les 92 restantes ont été utilisées pour l’évaluation du modèle. Les facteurs effectifs (angle de la pente, aspect de la pente, longueur de la pente, altitude, indice topographique d’humidité, indice de puissance d’écoulement, plan de courbure, lithologie, occupation du sol, distance au cours d’eau le plus proche, route et faille) ont été extraites de la base de données spatiales. A partir de l’utilisation de ces facteurs, la potentialité des sources d’eau souterraine a été calculée en utilisant les trois modèles, et les résultats ont été représentés graphiquement sous ArcGIS. Les courbes caractéristiques de fonctionnement de l’opérateur ont été établies pour les cartes de potentialité des sources d’eau souterraine et l’aire sous la courbe a été calculée (ASC). Les résultats finaux indiquent que le modèle RF (ASC = 79.38 %) a une meilleure performance que les modèles PdE (ASC = 75.69 %) et RL (ASC = 63.71 %). Les analyses de sensibilité et factorielles ont conclus que le modèle statistique à index à deux variables (par ex. RF) peut être utilisé comme un outil simple pour l’évaluation de la potentialité des sources d’eau souterraine lorsqu’un nombre suffisant de données est obtenu.

Resumen

Tres modelos estadísticos—relación de frecuencias (FR), pesos de evidencias (WofE) y regresión logística (LR)—produjeron mapas del potencial de manantiales de agua subterránea para el Birjand Township, en el sur de la Provincia de Khorasan, Iran. Se identificaron en total 304 manantiales en un relevamiento de campo y fueron mapeados en un sistema de información geográfica (GIS), de los cuales se seleccionaron aleatoriamente las ubicaciones de 212 manantiales para ser modelados y se usaron los 92 restantes para la evaluación del modelo. Se derivaron los factores efectivos (ángulo de la pendiente, aspecto de la pendiente, longitud de la pendiente, elevación, índice de humedad topográfica, índice de energía de la corriente, curvatura en planta, litología, uso de la tierra, y la distancia al río más cercano, carreteras y fallas) de una base de datos espaciales. Usando estos factores efectivos, el potencial de manantiales de agua subterránea fue calculado usando los tres modelos, y los resultados fueron ploteados en ArcGIS. Se elaboraron las curvas características de operación del receptor (ROC) para mapas de potencial de manantiales y se calculó el área bajo la curva (AUC). Los resultados finales indicaron que el modelo FR (AUC = 79.38 %) obtuvo un mejor desempeño que los modelos WofE (AUC = 75.69 %) y LR (AUC = 63.71 %). Los análisis de sensibilidad y factorial concluyeron que el modelo de índice estadístico bivariado (por ejemplo FR) puede ser usado como una herramienta simple en la evaluación del potencial de manantiales de agua subterránea cuando se obtienen un número suficientes de datos.

摘要

根据三个统计模型(频率比(FR)、证据加权(WofE)及逻辑回归(LR))编出了伊朗Khorasan省南部Birjand镇地下水泉潜力图。野外调查总共确定了304个泉,并用地理信息系统(GIS)绘出,其中212个泉位置随机选择进行模拟,剩下的92个泉用于模型评估。有效因子(坡角度、坡向、坡长、高程、地形湿润指数、河流功率指数、平面曲率、岩性、土地利用、到最近的河流、道路和断层的距离)来自空间数据库。利用这些有效因子,依靠三个模型计算了地下水泉潜力,计算结果用ArcGIS标绘。为泉潜力图绘制了受试者工作特征(ROC)曲线,对曲线下的区域(AUC)进行了计算。最终结果显示,FR模型(AUC = 79.38 %)运行的比WofE模型(AUC = 75.69 %)和 LR 模型(AUC = 63.71 %)要好。敏感性和因子分析认为,在获取足够数量的资料情况下,二变量的统计指数模型(也就是FR)可以用作地下水泉潜力评价的一个简单工具。

Resumo

Três modelos estatísticos—rácio de frequência (RF), evidência ponderada (EP) e regressão logística (RL)—produziram mapas de potencial em nascentes de água subterrânea para o município de Birjand, sul da Província de Khorasan, Irão. Num levantamento de campo foram identificadas um total de 304 nascentes que foram mapeadas num sistema de informação geográfica (SIG), e das quais se selecionaram aleatoriamente 212 locais de nascentes para serem modeladas, sendo as restantes 92 usadas para a avaliação do modelo. Os fatores efetivos (ângulo da vertente, orientação da vertente, extensão da vertente, altitude, índice de humidade topográfica, índice de potência de linha de água, curvatura projetada, litologia, uso do solo e distância à linha de água, à estrada e à falha mais próxima) foram obtidos a partir da base de dados espaciais. Utilizando estes fatores efetivos, foi calculado o potencial em nascentes de água subterrânea com os três modelos e os resultados foram projetados em ArcGIS. Foram desenhadas as curvas da característica de operação do recetor (COR) a partir dos mapas de potencial em nascentes e foi calculada a área subjacente à curva (ASC). Os resultados finais mostram que o modelo RF (ASC = 79.38 %) se comportou melhor que os modelos EP (ASC = 75.69 %) e RL (ASC = 63.71 %). Análises de sensibilidade e fatoriais concluíram que o modelo de índice estatístico bivariado (i.e. RF) pode ser usado como uma ferramenta simples na avaliação do potencial em nascentes de água subterrânea quando existe um número suficiente de dados.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akgün A (2012) A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides 9(1):93–106. doi:10.1007/s10346-011-0283-7

    Article  Google Scholar 

  • Akgün A, Dag S, Bulut F (2008) Landslide susceptibility mapping for a landslide prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ Geol 54:1127–1143

    Article  Google Scholar 

  • Arthur JD, Wood HAR, Baker AE, Cichon JR, Raines GL (2007) Development and implementation of a Bayesian-based aquifer vulnerability assessment in Florida. Nat Resour Res 16(2):93–107

    Article  Google Scholar 

  • Atkinson PM, Massari R (1998) Generalized linear modeling of susceptibility to landsliding in the central Apennines, Italy. Comput Geosci 24:373–385

    Article  Google Scholar 

  • Barbieri G, Cambuli P (2009) The weight of evidence statistical method in landslide susceptibility mapping of the Rio Pardu Valley (Sardinia, Italy). 18th World IMACS/MODSIM Congress, Cairns, Australia 13–17 July 2009

  • Bellman R (1961) Adaptive control processes: a guided tour. Princeton University Press, Princeton, NJ, 255 pp

    Google Scholar 

  • Beven K (1997) TOPMODEL: a critique. Hydrol Process 11:1069–1085

    Article  Google Scholar 

  • Beven K, Freer J (2001) A dynamic TOPMODEL. Hydrol Process 15(10):1993–2011

    Article  Google Scholar 

  • Bing Y, Zhengxi Y, Xiaochun W (2005) Applying weight of evidence to predict Pb-Zn potentiality in Ningnan region, Sichuan. World Geol 24(3):253–259

    Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists: modeling with GIS. Pergamon, Ottawa

  • Carranza EJM (2004) Weights of evidence modeling of mineral potential: a case study using small numbers of prospects, Abra, Philippines. Nat Resour Res 13(3):173–187

    Article  Google Scholar 

  • Cervi F, Berti M, Borgatti L, Ronchetti F, Manenti F, Corsini A (2010) Comparing predictive capability of statistical and deterministic methods for landslide susceptibility mapping: a case study in the northern Apennines (Reggio Emilia Province, Italy). Landslide 7(4):433–444

    Article  Google Scholar 

  • Chang Y, Leng W, He H (2010) Using weights of evidence to estimate the probability of forest fire occurrence: a case study in Huzhong area of the Daxingan Mountains. Sci Silvae Sinicae 46(2):103–109

    Google Scholar 

  • Chenini I, Ben Mammou A (2010) Ground water recharge study in arid region: an approach using GIS techniques and numerical modeling. Comput Geosci 36(6):801–817

    Article  Google Scholar 

  • Chenini I, Ben Mammou A, May ME (2010) Ground water recharge zone mapping using GIS-based multi-criteria analysis: a case study in central Tunisia (Maknassy Basin). Water Resour Manage 24(5):921–939

    Article  Google Scholar 

  • Chowdhury A, Jha MK, Chowdary VM, Mal BC (2009) Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. Int J Remote Sens 30:231–250

    Article  Google Scholar 

  • Corsini A, Cervi F, Ronchetti F (2009) Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology 111:79–87

    Article  Google Scholar 

  • Cuo L, Giambelluca TW, Ziegler AD, Nullet MA (2006) Use of the distributed hydrology soil vegetation model to study road effects on hydrological processes in Pang Khum Experimental Watershed, northern Thailand. Forest Ecol Manage 224:81–94

    Article  Google Scholar 

  • Davoodi Moghaddam D, Rezaei M, Pourghasemi HR, Pourtaghie ZS, Pradhan B (2013) Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arab J Geosci. doi:10.1007/s12517-013-1161-5

    Google Scholar 

  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat Hazards 65(1):135–165

    Article  Google Scholar 

  • Egan JP (1975) Signal detection theory and ROC analysis. Academic, New York, pp 266–268

  • Erner A, Sebnem H, Duzgun B (2010) Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway). Landslides 7:55–68

    Article  Google Scholar 

  • Fan D, Cui X, Yuan D, Wang J, Yang J, Wang S (2011) Weight of evidence method and its applications and development. Procedia Environ Sci 11:1412–1418

    Article  Google Scholar 

  • Forman RTT, Alexander LE (1998) Rods and their major ecological effects. Annu Rev Ecol Syst 29:207–31

    Article  Google Scholar 

  • Fotheringham AS, Charlton ME, Brunsdon C (2001) Spatial variations in school performance: a local analysis using geographically weighted regression. Geogr Environ Model 5:43–66

    Article  Google Scholar 

  • Ganapuram S, Vijaya Kumar GT, Murali Krishna IV, Kahya E, Demirel MC (2009) Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS. Adv Eng Softw 40:506–518

    Article  Google Scholar 

  • Geology Survey of Iran (GSI) (1997) Geology map of the Birjand Township. http://www.gsi.ir/Main/Lang_en/index.html. Accessed September 2000

  • Ghayoumian J, MohseniSaravi M, Feiznia S, Nourib B, Malekian A (2007) Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran. J Asian Earth Sci 30:364–374

    Article  Google Scholar 

  • Gupta M, Srivastava PK (2010) Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water Int 35:233–245

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New York, 392 pp

    Book  Google Scholar 

  • Huang X, Zhang Z, Chen J (2010) Application of hybrid fuzzy weights of evidence model in mineral resource assessment for coal in Chengde area, Hebei, China. J Geol Bull China 29(7):1075–1081

    Google Scholar 

  • IR of Iran Meteorological Org (IRIMO) (2012) The meteorology of the Birjand Township. http://www.irimo.ir/english/. Accessed April 2012

  • Jaiswal RK, Mukherjee S, Krishnamurthy J, Saxena R (2003) Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development: an approach. Inter J Remote Sens 24:993–1008

    Article  Google Scholar 

  • Jha MK, Chowdhury A, Chowdary VM, Peiffer S (2007) Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resour Manage 21:427–467

    Article  Google Scholar 

  • Kaliraj S, Chandrasekar N, Magesh NS (2013) Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arab J Geosci. doi:10.1007/s12517-013-0849-x

    Google Scholar 

  • Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int J Remote Sens 26(7):1477–1491

    Article  Google Scholar 

  • Lee S, Choi J (2004) Landslide susceptibility mapping using GIS and the weight-of evidence model. Int J Geograph Inform Sci 18(8):789–814

    Article  Google Scholar 

  • Lee S, Sambath T (2006) Landslide susceptibility mapping in the DamreiRomel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50:847–855

    Article  Google Scholar 

  • Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47:982–990

    Article  Google Scholar 

  • Lee S, Song KY, Kim Y, Park I (2012) Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model. Hydrogeol J 20:1511–1527. doi:10.1007/s10040-012-0894-7

    Article  Google Scholar 

  • Luping P, Pengda Z, Guangdao H (2008) The extended weights of evidence model using both continuous and ciscrete cata in assessment of mineral resources GIS-based. Geol Sci Technol Inform 27(6):102–106

    Google Scholar 

  • Mathew J, Jha VK, Rawat GS (2007) Weights of evidence modeling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand. Curr Sci 92(5):628–638

    Google Scholar 

  • Mathew J, Jha VK, Rawat GS (2009) Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides 6:17–26

    Article  Google Scholar 

  • Mioduszewski W (2008) Impact of a road crossing on groundwater level in a river valley. J Water Land Dev 12:49–58

    Article  Google Scholar 

  • Mohammady M, Pourghasemi HR, Pradhan B (2012) Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models. J Asian Earth Sci 61:221–236

    Article  Google Scholar 

  • Murthy KSR, Mamo AG (2009) Multi-criteria decision evaluation in groundwater zones identification in Moyale–Teltele sub basin, South Ethiopia. Int J Remote Sens 30:2729–2740

    Article  Google Scholar 

  • Moore ID, Burch GJ (1986) Sediment transport capacity of sheet and rill flow: application of unit stream power theory. Water Res 22:1350–1360

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson A (1991) Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30

    Article  Google Scholar 

  • Negnevitsky M (2002) Artificial intelligence: a guide to intelligent systems. Pearson, Harlow, UK, 394 pp

    Google Scholar 

  • O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–690

    Article  Google Scholar 

  • Oh HJ, Lee S (2011) Cross-application used to validate landslide susceptibility maps using a probabilistic model from Korea. Environ Earth Sci 64(2):395–409

    Article  Google Scholar 

  • Oh HJ, Kim YS, Choi JK, Lee S (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol 399:158–172

    Article  Google Scholar 

  • Ozdemir A (2011a) Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J Hydrol. doi:10.1016/j.jhydrol.2011.05.015

    Google Scholar 

  • Ozdemir (2011b) GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J Hydrol 411:290–308

    Article  Google Scholar 

  • Ozdemir A, Altural T (2013) A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J Asian Earth Sci 64:180–197

    Article  Google Scholar 

  • Porwal A, González-Álvarez I, Markwitz V, McCuaig TC, Mamuse A (2010) Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectively in the YilgarnCraton, Western Australia. Ore Geol Rev 38:184–196

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR (2012a) Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arab J Geosci. doi:10.1007/s12517-012-0532-7

    Google Scholar 

  • Pourghasemi HR, Mohammady M, Pradhan B (2012b) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 97:71–84

    Article  Google Scholar 

  • Pourghasemi HR, Gokceoglu C, Pradhan B, Deylami Moezzi K (2012c) Landslide susceptibility mapping using a spatial multi criteria evaluation model at Haraz Watershed, Iran. In: Pradhan B, Buchroithner M (eds) Terrigenous mass movements. Springer, Heidelberg, Germany, pp 23–49. doi:10.1007/978-3-642-25495-6-2

    Chapter  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012d) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63(2):965–996

    Article  Google Scholar 

  • Pourghasemi HR, Moradi HR, Mohammadi M, Pradhan B, Mostafazadeh R, Goli Jirandeh A (2012e) Landslide hazard assessment using remote sensing data, GIS and weights-of-evidence model (South of Golestan Province, Iran), Asia Pacific Conference on Environmental Science and Technology (APEST 2012), Advances in Biomedical Engineering, Volume 6, Environmental Science and Technology, 30–36

  • Pourghasemi HR, Moradi HR, Fatemi Aghda SM, Gokceoglu C, Pradhan B (2013a) GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi criteria evaluation models (North of Tehran, Iran). Arab J Geosci. doi:10.1007/s12517-012-0825-x

    Google Scholar 

  • Pourghasemi HR, Goli Jirandeh A, Pradhan B, Xu C, Gokceoglu C (2013b) Landslide susceptibility mapping using support vector machine and GIS. J Earth Syst Sci 122(2):349–369

    Article  Google Scholar 

  • Pourghasemi HR, Moradi HR, Fatemi Aghda SM (2013c) Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat Hazards. doi:10.1007/s11069-013-0728-5

    Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C, Deylami Moezzi K (2013d) A comparative assessment of prediction capabilities of Dempster-Shafer and Weights-of-evidence models in landslide susceptibility mapping using GIS. Geom, Nat Hazards and Risk, 4(2):93–118

  • Pengda Z (2007) Quantitative mineral prediction and deep mineral exploration. Earth Sci Front 14(5):1–10

    Google Scholar 

  • Regmi AD, Yoshida K, Pradhan B, Pourghasemi HR, Khumamoto T, Akgun A (2013) Application of frequency ratio, statistical index and weights-of-evidence models, and their comparison in landslide susceptibility mapping in central Nepal Himalaya. Arab J Geosci. doi:10.1007/s12517-012-0807-z

    Google Scholar 

  • Ruan S, Huang R (2001) Application of GIS-based information model on assessment of geological hazards risk. J Chengdu Univ Technol 28(1):89–92

    Google Scholar 

  • Saha D, Dhar YR, Vittala SS (2010) Delineation of groundwater development potential zones in parts of marginal Ganga Alluvial Plain in South Bihar, Eastern India. Environ Monit Assess 165:179–191

    Article  Google Scholar 

  • Shahid S, Nath SK, Roy J (2000) Groundwater potential modeling in a soft rock area using a GIS. Int J Remote Sens 21(9):1919–1924

    Article  Google Scholar 

  • Singh AK, Prakash SR (2003) An integrated approach of remote sensing, geophysics and GIS to evaluation of groundwater potentiality of Ojhala sub-watershed, Mirzapur District UP India. Remote Sensing Applications Centre, Lucknow, India

    Google Scholar 

  • Srivastava PK, Bhattacharya AK (2006) Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. Int J Remote Sens 27:4599–4620

    Article  Google Scholar 

  • Solomon S, Quiel F (2006) Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. Hydrol J 14:729–741

    Google Scholar 

  • Su H, Ge Y, Liu D (1999) A GIS-based mineral deposits prediction system by using evidence weight modeling. Geol Prospect 35(1):44–46

    Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419

    Article  Google Scholar 

  • Wright DF, Bonham-Carter GF (1996) VHMS favourability mapping with GIS-based integration models, Chisel Lake–Anderson Lake area. In: Bonham-Carter GF, Galley AG, Hall GEM (eds) EXTECH I: a multidisciplinary approach to massive sulphide research in the Rusty Lake–Snow Lake Greenstone Belts, Manitoba. Geol Surv Can Bull 426:339––401

  • Yesilnacar EK (2005) The application of computational intelligence to landslide susceptibility mapping in Turkey, PhD Thesis, University of Melbourne, Australia, 423 pp

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Katland slides (Tokat-Turkey). Comput Geosci 35:125–1138

    Article  Google Scholar 

  • Yilmaz I (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61(4):821–836

    Article  Google Scholar 

  • Yongqing C, Jianguo C, Xinqing W (2007) GIS-based integrated quantitative assessments of mineral resources. Geol Bull China 26(2):141–149

    Google Scholar 

  • Zare M, Pourghasemi HR, Vafakhah M, Pradhan B (2013) Landslide susceptibility mapping at Vaz watershed (Iran) using an artificial neural network model: a comparison between multi-layer perceptron (MLP) and radial basic function (RBF) algorithms. Arab J Geosci 6(8):2873–2888. doi:10.1007/s12517-012-0610-x

    Article  Google Scholar 

  • Zhu L, Huang J (2006) GIS-based logistic regression method for landslide susceptibility mapping in regional scale. J Zhejiang Univ Sci A 7:2007–2017

    Article  Google Scholar 

  • Zia H (2004) Hydrogeology and effect artificial recharge of ground water Birjand Plain. MSc Thesis, Tabriz University, Iran

Download references

Acknowledgements

The authors would like to thank Dr. Vincent Post (editor of Hydrogeology Journal) and three anonymous reviewers for their helpful comments on the early version of the manuscript. As well as, the authors acknowledge of Farzaneh Hossaini, Eng. Rastegar and Eng. Etminani for supports and helps in various steps of current research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Pourghasemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pourtaghi, Z.S., Pourghasemi, H.R. GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeol J 22, 643–662 (2014). https://doi.org/10.1007/s10040-013-1089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-1089-6

Keywords

Navigation