Skip to main content

Advertisement

Log in

Patterns and determinants of soil CO2 efflux in major forest types of Central Himalayas, India

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil CO2 efflux (Fsoil) is a significant contributor of labile CO2 to the atmosphere. The Himalayas, a global climate hotspot, condense several climate zones on account of their elevational gradients, thus, creating an opportunity to investigate the Fsoil trends in different climate zones. Presently, the studies in the Indian Himalayan region are localized to a particular forest type, climate zone, or area of interest, such as seasonal variation. We used a portable infrared gas analyzer to investigate the Fsoil rates in Himalayan tropical to alpine scrub forest along a 3100-m elevational gradient. Several study parameters such as seasons, forest types, tree species identity, age of trees, distance from tree base, elevation, climatic factors, and soil physico-chemical and enzymatic parameters were investigated to infer their impact on Fsoil regulation. Our results indicate the warm and wet rainy season Fsoil rates to be 3.8 times higher than the cold and relatively dry winter season. The tropical forest types showed up to 11 times higher Fsoil rates than the alpine scrub forest. The temperate Himalayan blue pine and tropical dipterocarp sal showed significant Fsoil rates, while the alpine Rhododendron shrubs the least. Temperature and moisture together regulate the rainy season Fsoil maxima. Spatially, Fsoil rates decreased with distance from the tree base (ρ =  − 0.301; p < 0.0001). Nepalese alder showed a significant positive increase in Fsoil with stem girth (R2 = 0.7771; p = 0.048). Species richness (r, 0.81) and diversity (r, 0.77) were significantly associated with Fsoil, while elevation and major edaphic properties showed a negative association. Surface litter inclusion presented an elevation-modulated impact. Temperature sensitivity was exorbitantly higher in the sub-tropical pine (Q10, 11.80) and the alpine scrub (Q10, 9.08) forests. We conclude that the rise in atmospheric temperature and the reduction in stand density could enhance the Fsoil rates on account of increased temperature sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Allen, S. E., Grimshaw, H. M., Parkinson, J. A., & Quarmby, C. (1974). Chemical analysis of ecological materials. Blackwell Scientific Publications.

    Google Scholar 

  • Anderson, J. M., & Ingram, J. S. I. (1993). Tropical soil biology and fertility: A handbook of methods. C. A. B International, Wallingford, Oxfordshire.

  • Badraghi, A., Ventura, M., Polo, A., Borruso, L., Giammarchi, F., & Montagnani, L. (2021). Soil respiration variation along an altitudinal gradient in the Italian Alps: Disentangling forest structure and temperature effects. PLoS ONE, 16(8), e0247893. https://doi.org/10.1371/journal.pone.0247893

  • Bargali, S. S., Joshi, M., & Bargali, K. (1992). Seasonal pattern of total soil respiration in an age series of Eucalypt plantation and mixed broad-leaved forest in Tarai belt of Kumaun Himalaya. Oecologia Montana, 1(2), 7–11.

    Google Scholar 

  • Bastida, F., Zsolnay, A., Hernández, T., & García, C. (2008). Past, present and future of soil quality indices: A biological perspective. Geoderma, 147(3–4), 159–171. https://doi.org/10.1016/j.geoderma.2008.08.007

    Article  CAS  Google Scholar 

  • Becker, A., & Bugmann, H. (2001). Global change and mountain regions — An IGBP initiative for collaborative research. In G. Visconti, M. Beniston, & E. D. Iannorelli (Eds.), Global change and protected areas. Advances in Global Change Research (pp. 3–9). Springer, Dordrecht. https://doi.org/10.1007/0-306-48051-4_1

  • Bhuyan, S. I., Laskar, I., Tripathi, O. P., & Khan, M. L. (2014). Effect of different land use patterns on soil carbon-dioxide emission in Eastern Himalaya. International Journal of Innovative Science, Engineering and Technology, 1(9), 476–480.

    Google Scholar 

  • Blalock, H. M., Jr. (1963). Correlated independent variables: The problem of multicollinearity. Social Forces, 42(2), 233–237. https://doi.org/10.1093/sf/42.2.233

    Article  Google Scholar 

  • Bloemen, J., Agneessens, L., Meulebroek, L. V., Aubrey, D. P., McGuire, M. A., Teskey, R. O., & Steppe, K. (2014). Stem girdling affects the quantity of CO2 transported in xylem as well as CO2 efflux from soil. New Phytologist, 201(3), 897–907. https://doi.org/10.1111/nph.12568

    Article  CAS  Google Scholar 

  • Bréchet, L., Ponton, S., Alméras, T., Bonal, D., & Epron, D. (2011). Does spatial distribution of tree size account for spatial variation in soil respiration in a tropical forest? Plant and Soil, 347(1), 293–303. https://doi.org/10.1007/s11104-011-0848-1

    Article  CAS  Google Scholar 

  • Byanjankar, S., Dhamala, M. K., Maharjan, S. R., & Kayastha, S. P. (2020). Soil respiration and its temperature sensitivity to different ecosystems in Annapurna Conservation Area. Nepal. Nepal Journal of Environmental Science, 8, 69–81. https://doi.org/10.3126/njes.v8i1.34471

    Article  Google Scholar 

  • Canarini, A., Kaiser, C., Merchant, A., Richter, A., & Wanek, W. (2019). Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli. Frontiers in Plant Science, 10, 157. https://doi.org/10.3389/fpls.2019.00157

    Article  Google Scholar 

  • Cardoso, E. J. B. N., Vasconcellos, R. L. F., Bini, D., Miyauchi, M. Y. H., Santos, C. A. D., Alves, P. R. L., Paula, A. M. D., Nakatani, A. S., Pereira, J. D. M., & Nogueira, M. A. (2013). Soil health: Looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Scientia Agricola, 70, 274–289. https://doi.org/10.1590/S0103-90162013000400009

    Article  Google Scholar 

  • Casida, L. E., Jr. (1977). Microbial metabolic activity in soil as measured by dehydrogenase determinations. Applied and Environmental Microbiology, 34(6), 630–636. https://doi.org/10.1128/aem.34.6.630-636.1977

    Article  CAS  Google Scholar 

  • Chakraborty, J. S., Singh, S., Singh, N., & Jeeva, V. (2021). Methane and carbon dioxide flux heterogeneity mediated by termite mounds in moist tropical forest soils of Himalayan foothills, India. Ecosystems, 1–16. https://doi.org/10.1007/s10021-021-00630-y

  • Champion, H. G., & Seth, S. K. (1968). A revised survey of forest types of India. Natraj Publishers.

    Google Scholar 

  • Chen, J., Franklin, J. F., & Spies, T. A. (1993). Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agricultural and Forest Meteorology, 63(3–4), 219–237. https://doi.org/10.1016/0168-1923(93)90061-l

    Article  Google Scholar 

  • Dar, J. A., Ganie, K. A., & Sundarapandian, S. (2015). Soil CO2 efflux among four coniferous forest types of Kashmir Himalaya. India. Environmental Monitoring and Assessment, 187(11), 1–13. https://doi.org/10.1007/s10661-015-4927-2

    Article  CAS  Google Scholar 

  • Davidson, E. A., Belk, E., & Boone, R. D. (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4(2), 217–227. https://doi.org/10.1046/j.1365-2486.1998.00128.x

    Article  Google Scholar 

  • Davidson, E. A., Savage, K. V. L. V., Verchot, L. V., & Navarro, R. (2002). Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agricultural and Forest Meteorology, 113(1–4), 21–37. https://doi.org/10.1016/S0168-1923(02)00100-4

    Article  Google Scholar 

  • Dhital, D., Manandhar, R., Manandhar, P., & Maharjan, S. R. (2022). Soil CO2 efflux dynamics and its relationship with the environmental variables in a sub-tropical mixed forest. Open Journal of Forestry, 12(3), 312–336. https://doi.org/10.4236/ojf.2022.123017

    Article  Google Scholar 

  • Dilustro, J. J., Collins, B., Duncan, L., & Crawford, C. (2005). Moisture and soil texture effects on soil CO2 efflux components in southeastern mixed pine forests. Forest Ecology and Management, 204(1), 87–97. https://doi.org/10.1016/j.foreco.2004.09.001

    Article  Google Scholar 

  • Epron, D., Farque, L., Lucot, É., & Badot, P. M. (1999). Soil CO2 efflux in a beech forest: Dependence on soil temperature and soil water content. Annals of Forest Science, 56(3), 221–226. https://doi.org/10.1051/forest:19990304

    Article  Google Scholar 

  • Ewel, K. C., Cropper Jr, W. P., & Gholz, H. L. (1987). Soil CO2 evolution in Florida slash pine plantations. I. Changes through time. Canadian Journal of Forest Research, 17(4), 325–329. https://doi.org/10.1139/x87-054

  • Fang, C., & Moncrieff, J. B. (2001). The dependence of soil CO2 efflux on temperature. Soil Biology and Biochemistry, 33(2), 155–165. https://doi.org/10.1016/S0038-0717(00)00125-5

    Article  CAS  Google Scholar 

  • FAO. (2007). Digital soil map of the world. FAO-UN Land and Water Division.

    Google Scholar 

  • Fekete, I., Kotroczó, Z., Varga, C., Nagy, P. T., Várbíró, G., Bowden, R. D., Tóth, J. A., & Lajtha, K. (2014). Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in a Central-European deciduous forest. Soil Biology and Biochemistry, 74, 106–114. https://doi.org/10.1016/j.soilbio.2014.03.006

    Article  CAS  Google Scholar 

  • Fenn, K. H., Malhi, Y., & Morecroft, M. D. (2010). Soil CO2 efflux in a temperate deciduous forest: Environmental drivers and component contributions. Soil Biology & Biochemistry, 42(10), 1685–1693. https://doi.org/10.1016/j.soilbio.2010.05.028

    Article  CAS  Google Scholar 

  • Ferreira, C. R. P. C., Antonino, A. C. D., Sampaio, E. V. D. S. B., Correia, K. G., Lima, J. R. D. S., Soares, W. D. A., & Menezes, R. S. C. (2018). Soil CO2 efflux measurements by alkali absorption and infrared gas analyzer in the Brazilian semiarid region. Revista Brasileria Ciência Do Solo, 42. https://doi.org/10.1590/18069657rbcs20160563

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Friedlingstein, P., O’sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., & Zaehle, S. (2020). Global carbon budget 2020. Earth System Science Data, 12(4), 3269-3340. https://doi.org/10.5194/essd-12-3269-2020

  • FSI (2019). India state of forest report 2019. Forest Survey of India, Ministry of Environment, Forest and Climate Change. Government of India, Dehradun.

  • Giardina, C. P., Litton, C. M., Crow, S. E., & Asner, G. P. (2014). Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nature Climate Change, 4, 822–827. https://doi.org/10.1038/nclimate2322

    Article  CAS  Google Scholar 

  • Gnanamoorthy, P., Selvam, V., Burman, P. K. D., Chakraborty, S., Karipot, A., Nagarajan, R., Ramasubramanian, R., Song, Q., Zhang, Y., & Grace, J. (2020). Seasonal variations of net ecosystem (CO2) exchange in the Indian tropical mangrove forest of Pichavaram. Estuarine, Coastal and Shelf Science, 243, 106828. https://doi.org/10.1016/j.ecss.2020.106828

  • Grand, S., Rubin, A., Verrecchia, E. P., & Vittoz, P. (2016). Variation in soil respiration across soil and vegetation types in an alpine valley. PLOS ONE, 11(9), e0163968. https://doi.org/10.1371/journal.pone.0163968

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.

    Google Scholar 

  • Hanson, P. J., Wullschleger, S. D., Bohlman, S. A., & Todd, D. E. (1993). Seasonal and topographic patterns of forest floor CO2 efflux from an upland oak forest. Tree Physiology, 13(1), 1–15. https://doi.org/10.1093/treephys/13.1.1

    Article  CAS  Google Scholar 

  • Hari, M., & Tyagi, B. (2022). Terrestrial carbon cycle: A tipping edge of climate change between atmosphere and biosphere ecosystems. Environmental Science: Atmospheres. https://doi.org/10.1039/D1EA00102G

  • Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., & Schulze, E. D. (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 108(3), 389–411. https://doi.org/10.1007/BF00333714

    Article  CAS  Google Scholar 

  • Jain, A. K. (2020). Geological evolution of the Himalayan mountains. In N. Gupta, S. Tandon (Eds.), Geodynamics of the Indian Plate (pp. 363 – 393). Springer Geology, Springer, Cham. https://doi.org/10.1007/978-3-030-15989-4_10

  • Jarvis, P., Rey, A., Petsikos, C., Wingate, L., Rayment, M., Pereira, J., Banza, J., David, J., Miglietta, F., Borghetti, M., & Manca, G. (2007). Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: The “Birch effect.” Tree Physiology, 27(7), 929–940. https://doi.org/10.1093/treephys/27.7.929

    Article  CAS  Google Scholar 

  • Jenkins, M. E., & Adams, M. A. (2011). Respiratory quotients and Q10 of soil respiration in sub-alpine Australia reflect influences of vegetation types. Soil Biology and Biochemistry, 43(6), 1266–1274. https://doi.org/10.1016/j.soilbio.2011.02.017

    Article  CAS  Google Scholar 

  • Jina, B. S., Bohra, C. P. S., Rawat, Y. S., & Bhatt, M. D. (2008). Seasonal changes in soil respiration of degraded and non-degraded sites in oak and pine forests of Central Himalaya. Scientific World, 6(6), 89–93. https://doi.org/10.3126/sw.v6i6.2641

    Article  Google Scholar 

  • Joshi, M. (1994). Patterns of forest floor respiration in broadleaf and conifer forest ecosystems in parts of central Himalaya. Proceedings of the Indian National Science Academy Part B, 60, 67–74.

    Google Scholar 

  • Joshi, M., Mer, G. S., Singh, S. P., & Rawat, Y. S. (1991). Seasonal pattern of total soil respiration in undisturbed and disturbed ecosystems of Central Himalaya. Biology and Fertility of Soils, 11(4), 267–272. https://doi.org/10.1007/BF00335846

    Article  Google Scholar 

  • Joshi, M., Rawat, Y. S., & Ram, J. (2012). Seasonal variations in species diversity, dry matter and net primary productivity of herb layer of Quercus leucotrichophora-Pinus roxburghii mixed forest in Kumaun Himalaya. India. Journal of Forestry Research, 23(2), 223–228. https://doi.org/10.1007/s11676-011-0214-4

    Article  Google Scholar 

  • Joshi, R. K., & Garkoti, S. C. (2020). Litter dynamics, leaf area index and forest floor respiration as indicators for understanding the role of Nepalese alder in white oak forests in central Himalaya, India. Ecological Indicators, 111, 106065. https://doi.org/10.1016/j.ecolind.2020.106065

  • Joshi, R. K., & Garkoti, S. C. (2021). Influence of Nepalese alder on soil physico-chemical properties and fine root dynamics in white oak forests in the central Himalaya, India. Catena, 200, 105140. https://doi.org/10.1016/j.catena.2020.105140

  • Karhu, K., Auffret, M. D., Dungait, J. A. J., Hopkins, D. W., Prosser, J. I., Singh, B. K., Subke, J. A., Wookey, P. A., Ågren, G. I., Sebastià, M. T., Gouriveau, F., Bergkvist, G., Meir, P., Nottingham, A. T., Salinas, N., & Hartley, I. P. (2014). Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature, 513(7516), 81–84. https://doi.org/10.1038/nature13604

    Article  CAS  Google Scholar 

  • Karki, H., Bargali, K., & Bargali, S. S. (2021). Spatial and seasonal pattern of fine root biomass and turnover rate in different land use systems in Central Himalaya. India. Russian Journal of Ecology, 52(1), 36–48. https://doi.org/10.1134/S1067413621010070

    Article  Google Scholar 

  • Kaushal, S., & Baishya, R. (2021). Stand structure and species diversity regulate biomass carbon stock under major Central Himalayan forest types of India. Ecological Processes, 10, 14. https://doi.org/10.1186/s13717-021-00283-8

    Article  Google Scholar 

  • Kaushal, S., Siwach, A., & Baishya, R. (2021). Diversity, regeneration, and anthropogenic disturbance in major Indian Central Himalayan forest types: Implications for conservation. Biodiversity and Conservation, 30, 2451–2480. https://doi.org/10.1007/s10531-021-02203-w

    Article  Google Scholar 

  • King, J. A., & Harrison, R. (2002). Measuring soil respiration in the field: An automated closed chamber system compared with portable IRGA and alkali absorption methods. Communications in Soil Science and Plant Analysis, 33(3–4), 403–423. https://doi.org/10.1081/CSS-120002753

    Article  CAS  Google Scholar 

  • Körner, C. (2007). The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution, 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006

    Article  Google Scholar 

  • Kumar, A. D., & Ramakrishnan, P. S. (1985). Litter dynamics in khasi pine (Pinus kesiya Royle ex Gordon) of north-eastern India. Forest Ecology and Management., 10(1–2), 135–153. https://doi.org/10.1016/0378-1127(85)90018-0

    Article  Google Scholar 

  • Kumar, P., Singh, R., Singh, H., Chand, T., & Bala, N. (2020). Assessment of soil carbon dioxide efflux and its controlling factors in moist temperate forest of West Himalayas. Current Science, 119(4), 661.

    Article  CAS  Google Scholar 

  • Kumar, S., Kumar, M., Verma, A. K., Joshi, R. K., Hansada, P., Geise, A., & Garkoti, S. K. (2023). Seasonal dynamics of soil and microbial respiration in the banj oak and chir pine forest of the central Himalaya, India. Applied Soil Ecology, 182, 104740. https://doi.org/10.1016/j.apsoil.2022.104740

  • Kuzyakov, Y. (2006). Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry, 38(3), 425–448. https://doi.org/10.1016/j.soilbio.2005.08.020

    Article  CAS  Google Scholar 

  • Laishram, J., Saxena, K. G., Maikhuri, R. K., & Rao, K. S. (2012). Soil quality and soil health: A review. International Journal of Ecology and Environmental Sciences, 38(1), 19–37.

    Google Scholar 

  • Lal, R. (2008). Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Science, 363(1492), 815–830

  • Lal, R., Monger, C., Nave, L., & Smith, P. (2021). The role of soil in regulation of climate. Philosophical Transactions of the Royal Society B, 376(1834), 20210084. https://doi.org/10.1098/rstb.2021.0084

    Article  CAS  Google Scholar 

  • Lashof, D., & Ahuja, D. (1990). Relative contributions of greenhouse gas emissions to global warming. Nature, 344, 529–531. https://doi.org/10.1038/344529a0

    Article  CAS  Google Scholar 

  • Lee, J. S. (2018). Relationship of root biomass and soil respiration in a stand of deciduous broadleaved trees—A case study in a maple tree. Journal of Ecology and Environment, 42(1), 1–8. https://doi.org/10.1186/s41610-018-0078-z

    Article  Google Scholar 

  • Lee, K. H., & Jose, S. (2003). Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 185(3), 263–273. https://doi.org/10.1016/S0378-1127(03)00164-6

    Article  Google Scholar 

  • Lei, J., Guo, X., Zeng, Y., Zhou, J., Gao, Q., & Yang, Y. (2021). Temporal changes in global soil respiration since 1987. Nature Communications, 12(1), 403. https://doi.org/10.1038/s41467-020-20616-z

    Article  CAS  Google Scholar 

  • Lorenz, K., & Lal, R. (2010). The importance of carbon sequestration in forest ecosystems. In K. Lorenz & R. Lal Carbon sequestration in forest ecosystems (1st ed., pp. 1 – 21). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3266-9_6

  • Lovenduski, N. S., & Bonan, G. B. (2017). Reducing uncertainty in projections of terrestrial carbon uptake. Environmental Research Letters, 12(4), 044020. https://doi.org/10.1088/1748-9326/aa66b8

  • Lund, C. P., Riley, W. J., Pierce, L. L., & Field, C. B. (1999). The effects of chamber pressurization on soil-surface CO2 flux and the implications for NEE measurements under elevated CO2. Global Change Biology, 5(3), 269–281.

    Article  Google Scholar 

  • Luo, Y., & Zhou, X. (2006). Soil respiration and the environment. Academic Press.

    Google Scholar 

  • Maier, M., Schack-Kirchner, H., Hildebrand, E. E., & Schindler, D. (2011). Soil CO2 efflux vs. soil respiration: Implications for flux models. Agricultural and Forest Meteorology, 151(12), 1723–1730. https://doi.org/10.1016/j.agrformet.2011.07.006

  • Mariappan, S., Hartley, I. P., Cressey, E. L., Dungait, J. A., & Quine, T. A. (2022). Soil burial reduces decomposition and offsets erosion-induced soil carbon losses in the Indian Himalaya. Global Change Biology, 28(4), 1643–1658. https://doi.org/10.1111/gcb.15987

    Article  CAS  Google Scholar 

  • Metcalfe, D. B., Fisher, R. A., & Wardle, D. A. (2011). Plant communities as drivers of soil respiration: Pathways, mechanisms, and significance for global change. Biogeosciences, 8(8), 2047–2061. https://doi.org/10.5194/bg-8-2047-2011

    Article  Google Scholar 

  • Mishra, S., Chaudhary, L. B., Jain, M. K., Kumar, V., & Behera, S. K. (2020). Interaction of abiotic factor on soil CO2 efflux in three forest communities in tropical deciduous forest from India. Environmental Monitoring and Assessment, 191(Suppl 3), 796. https://doi.org/10.1007/s10661-019-7689-4

    Article  CAS  Google Scholar 

  • Mitra, B., Miao, G., Minick, K., McNulty, S. G., Sun, G., Gavazzi, M., King, J. S., & Noormets, A. (2019). Disentangling the effects of temperature, moisture, and substrate availability on soil CO2 efflux. Journal of Geophysical Research: Biogeosciences, 124, 2060–2075. https://doi.org/10.1029/2019JG005148

    Article  CAS  Google Scholar 

  • Mundim, K. C., Baraldi, S., Machado, H. G., & Vieira, F. M. (2020). Temperature coefficient (Q10) and its applications in biological systems: Beyond the Arrhenius theory. Ecological Modelling, 431, 109127. https://doi.org/10.1016/j.ecolmodel.2020.109127

  • Nirola, M. P., Wangdi, N., Mayer, M., Schindlbacher, A., & Jandl, R. (2016). Drivers of soil respiration in two mountain forests in Bhutan. Masters of Science in Mountain Forestry, University of Natural Resources and Life Sciences.

  • Noh, N. J., Son, Y., Lee, S. K., Yoon, T. K., Seo, K. W., Kim, C., Lee, W. K., Bae, S. W., & Hwang, J. (2010). Influence of stand density on soil CO2 efflux for a Pinus densiflora forest in Korea. Journal of Plant Research, 123, 411–419. https://doi.org/10.1007/s10265-010-0331-8

    Article  Google Scholar 

  • Pandey, R., Rawat, M., Singh, R., & Bala, N. (2023). Large scale spatial assessment, modelling and identification of drivers of soil respiration in the Western Himalayan temperate forest. Ecological Indicators, 146, 109927. https://doi.org/10.1016/j.ecolind.2023.109927

  • Phillips, C. L., & Nickerson, N. (2015). Soil respiration. Reference Module in Earth Systems and Environmental Sciences, Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.09442-2

    Article  Google Scholar 

  • Ponder, F., Jr. (2005). Effect of soil compaction and biomass removal on soil CO2 efflux in a Missouri forest. Communications in Soil Science and Plant Analysis, 36(9–10), 1301–1311. https://doi.org/10.1081/CSS-200056935

    Article  CAS  Google Scholar 

  • Pongracic, S., Kirschbaum, M. U. F., & Raison, R. J. (1997). Comparison of soda lime and infrared gas analysis techniques for in situ measurement of forest soil respiration. Canadian Journal of Forest Research, 27(11), 1890–1895. https://doi.org/10.1139/x97-139

    Article  Google Scholar 

  • Rai, I. D., Adhikari, B. S., & Rawat, G. S. (2012). Floral diversity along sub-alpine and alpine ecosystems in Tungnath area of Kedarnath Wildlife Sanctuary. Uttarakhand. Indian Forester, 138(10), 927.

    Google Scholar 

  • Raich, J. W., & Potter, C. S. (1995). Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 9(1), 23–36. https://doi.org/10.1029/94GB02723

    Article  CAS  Google Scholar 

  • Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus b: Chemical and Physical Meteorology, 44(2), 81–99. https://doi.org/10.3402/tellusb.v44i2.15428

    Article  Google Scholar 

  • Raich, J. W., & Tufekciogul, A. (2000). Vegetation and soil respiration: Correlations and controls. Biogeochemistry, 48(1), 71–90. https://doi.org/10.1023/A:1006112000616

    Article  CAS  Google Scholar 

  • Rambo, T. R., & North, M. P. (2009). Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest. Forest Ecology and Management, 257(2), 435–442. https://doi.org/10.1016/j.foreco.2008.09.029

    Article  Google Scholar 

  • Ramesh, T., Manjaiah, K. M., Tomar, J. M. S., & Ngachan, S. V. (2013). Effect of multipurpose tree species on soil fertility and CO2 efflux under hilly ecosystems of Northeast India. Agroforestry Systems, 87(6), 1377–1388. https://doi.org/10.1007/s10457-013-9645-6

    Article  Google Scholar 

  • Rawat, M., Arunachalam, K., & Arunachalam, A. (2021). Tree species influence soil respiration in a temperate forest of Uttrakhand Himalaya. India. Journal of Sustainable Forestry, 40(8), 820–830. https://doi.org/10.1080/10549811.2020.1822873

    Article  Google Scholar 

  • Renchon, A. A., Drake, J. E., Macdonald, C. A., Sihi, D., Hinko-Najera, N., Tjoelker, M. G., & Pendall, E. (2021). Concurrent measurements of soil and ecosystem respiration in a mature eucalypt woodland: advantages, lessons, and questions. Journal of Geophysical Research: Biogeosciences, 126(3), e2020JG006221. https://doi.org/10.1029/2020JG006221

  • Rodda, S. R., Thumaty, K. C., Praveen, M. S. S., Jha, C. S., & Dadhwal, V. K. (2021). Multi-year eddy covariance measurements of net ecosystem exchange in tropical dry deciduous forest of India. Agricultural and Forest Meteorology, 301, 108351. https://doi.org/10.1016/j.agrformet.2021.108351

  • Sánchez-Cañete, E. P., Barron-Gafford, G. A., & Chorover, J. (2018). A considerable fraction of soil-respired CO2 is not emitted directly to the atmosphere. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-29803-x

    Article  CAS  Google Scholar 

  • Sanders, N. J., & Rahbek, C. (2012). The patterns and causes of elevational diversity gradients. Ecography, 35(1), 1–3. https://doi.org/10.1111/j.1600-0587.2011.07338.x

    Article  Google Scholar 

  • Sarma, D., Burman, P. K. D., Chakraborty, S., Gogoi, N., Bora, A., Metya, A., Datye, A., Murkute, C., & Karipot, A. (2022). Quantifying the net ecosystem exchange at a semi-deciduous forest in northeast India from intra-seasonal to the seasonal time scale. Agricultural and Forest Meteorology, 314, 108786. https://doi.org/10.1016/j.agrformet.2021.108786

  • Schickhoff, U., Singh, R. B., & Mal, S. (2016). Climate change and dynamics of glaciers and vegetation in the Himalaya: An overview. In R. Singh, U. Schickhoff, & S. Mal (Eds.), Climate change, glacier response, and vegetation dynamics in the Himalaya (1st ed., pp. 1 – 26). Springer, Cham. https://doi.org/10.1007/978-3-319-28977-9_1

  • Schulze, E. D. (1967). Soil respiration of tropical vegetation types. Ecology, 48(4), 652–653. https://doi.org/10.2307/1936509

    Article  Google Scholar 

  • Schurman, J. S., & Thomas, S. C. (2021). Linking soil CO2 efflux to individual trees: Size-dependent variation and the importance of the Birch effect. Soil Systems, 5(1), 7. https://doi.org/10.3390/soilsystems5010007

    Article  CAS  Google Scholar 

  • Schwendenmann, L., & Macinnis-Ng, C. (2016). Soil CO2 efflux in an old-growth southern conifer forest (Agathis australis)–magnitude, components and controls. The Soil, 2(3), 403–419. https://doi.org/10.5194/soil-2-403-2016

    Article  CAS  Google Scholar 

  • Shameem, S. A., Soni, P., & Bhat, G. A. (2010). Comparative study of herb layer diversity in lower Dachigam National Park, Kashmir Himalaya, India. International Journal of Biodiversity and Conservation, 2(10), 308–315.

    Google Scholar 

  • Singh, D., Sharma, P., Kumar, U., Daverey, A., & Arunachalam, K. (2021). Effect of forest fire on soil microbial biomass and enzymatic activity in oak and pine forests of Uttarakhand Himalaya. India. Ecological Processes, 10(1), 29. https://doi.org/10.1186/s13717-021-00293-6

    Article  Google Scholar 

  • Singh, J. S., & Gupta, S. R. (1977). Plant decomposition and soil respiration in terrestrial ecosystems. The Botanical Review, 43(4), 449–528. https://doi.org/10.1007/BF02860844

    Article  CAS  Google Scholar 

  • Singh, J. S., & Singh, S. P. (1987). Forest vegetation of the Himalaya. The Botanical Review, 53(1), 80–192. https://doi.org/10.1007/BF02858183

    Article  Google Scholar 

  • Singh, N., & Parida, B. R. (2019). Environmental factors associated with seasonal variations of night-time plant canopy and soil respiration fluxes in deciduous conifer forest, Western Himalaya. India. Trees, 33(2), 599–613. https://doi.org/10.1007/s00468-018-1804-y

    Article  CAS  Google Scholar 

  • Singh, N., Parida, B. R., Charakborty, J. S., & Patel, N. R. (2019). Net ecosystem exchange of CO2 in deciduous pine forest of lower Western Himalaya. India. Resources, 8(2), 98. https://doi.org/10.3390/resources8020098

    Article  Google Scholar 

  • Sivaranjani, S., & Panwar, V. P. (2021). Environmental controls and influences of Pinus roxburghii Sarg. (Chir pine) plantation on temporal variation in soil carbon dioxide emission and soil organic carbon stock under humid subtropical region. Environmental Monitoring and Assessment, 193, 1–14. https://doi.org/10.1007/s10661-021-09419-x

    Article  CAS  Google Scholar 

  • Sundarapandian, S., & Dar, J. (2013). Variation in soil CO2 efflux in Pinus wallichiana and Abies pindrow temperate forests of Western Himalayas. India. Forest Research, 3(116), 2. https://doi.org/10.4172/2168-9776.1000116

    Article  Google Scholar 

  • Tewary, C. K., Pandey, U., & Singh, J. S. (1982). Soil and litter respiration rates in different microhabitats of a mixed oak-conifer forest and their control by edaphic conditions and substrate quality. Plant and Soil, 65(2), 233–238. https://doi.org/10.1007/BF02374653

    Article  Google Scholar 

  • Tiwari, P., Bhattacharya, P., Rawat, G. S., Rai, I. D., & Talukdar, G. (2021). Experimental warming increases ecosystem respiration by increasing above-ground respiration in alpine meadows of Western Himalaya. Scientific Reports, 11(1), 2640. https://doi.org/10.1038/s41598-021-82065-y

    Article  CAS  Google Scholar 

  • Trumbore, S. (2006). Carbon respired by terrestrial ecosystems–recent progress and challenges. Global Change Biology, 12(2), 141–153. https://doi.org/10.1111/j.1365-2486.2006.01067.x

    Article  Google Scholar 

  • Usman, S., Singh, S. P., & Rawat, Y. S. (1999). Fine root productivity and turnover in two evergreen central Himalayan forests. Annals of Botany, 84(1), 87–94. https://doi.org/10.1006/anbo.1999.0894

    Article  Google Scholar 

  • Vermue, E., Elbers, J., & Hoosbeek, M. (2008). A comparative field study of four soil respiration systems. Accessed on 18 March 2023 https://edepot.wur.nl/120659

  • Vikram, K., Chaudhary, H., Notup, T., Dinakaran, J., & Rao, K. S. (2022). Soil respiration under different land use systems in Kumaon region of Central Himalaya, India. International Journal of Ecology and Environmental Sciences, 48(5), 649–661. https://doi.org/10.55863/ijees.2022.0649

  • Walkiewicz, A., Rafalska, A., Bulak, P., Bieganowski, A., & Osborne, B. (2021). How can litter modify the fluxes of CO2 and CH4 from forest soils? A Mini-Review. Forests, 12(9), 1276. https://doi.org/10.3390/f12091276

    Article  Google Scholar 

  • Wang, B., Jiang, Y., Wei, X., Zhao, G., Guo, H., & Bai, X. (2011). Effects of forest type, stand age, and altitude on soil respiration in subtropical forests of China. Scandinavian Journal of Forest Research, 26(1), 40–47. https://doi.org/10.1080/02827581.2010.538082

    Article  Google Scholar 

  • Wangdi, N., Mayer, M., Nirola, M. P., Zangmo, N., Orong, K., Ahmed, I. U., Darabant, A., Jandl, R., Gratzer, G., & Schindlbacher, A. (2017). Soil CO2 efflux from two mountain forests in the eastern Himalayas, Bhutan: Components and controls. Biogeosciences, 14(1), 99–110. https://doi.org/10.5194/bg-14-99-2017

    Article  CAS  Google Scholar 

  • Wani, O. A., Kumar, S., Hussain, N., Wani, A. I. A., Subhash, B., Parvej, A., Rashid, M., Popescu, S. M., & Mansoor, S. (2022). Multi-scale processes influencing global carbon storage and land-carbon-climate nexus: A critical review. Pedosphere. https://doi.org/10.1016/j.pedsph.2022.07.002

    Article  Google Scholar 

  • Wildung, R. E., Garland, T. R., & Buschbom, R. L. (1975). The interdependent effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils. Soil Biology and Biochemistry, 7(6), 373–378. https://doi.org/10.1016/0038-0717(75)90052-8

    Article  CAS  Google Scholar 

  • Yan, W. D., Xu, W. M., Tian, D. L., Peng, Y. Y., Zhen, W., Zhang, C., & Xu, J. (2014). Soil CO2 flux in different types of forests under a subtropical microclimatic environment. Pedosphere, 24(2), 243–250. https://doi.org/10.1016/S1002-0160(14)60010-2

    Article  CAS  Google Scholar 

  • Zhao, J. F., Liao, Z. Y., Yang, L. Y., Shi, J. K., & Tan, Z. H. (2021). Characteristics of soil respiration and its components of a mixed dipterocarp forest in China. Forests, 12(9), 1159. https://doi.org/10.3390/f12091159

    Article  Google Scholar 

  • Zuur, A. F., Ieno, E. N., & Smith, G. M. (2007). Analysing ecological data. Springer.

    Book  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Principal Chief Conservator of Forests (PCCF) & Chief Wildlife Warden (CWLW), Uttarakhand Forest Department, Uttarakhand, along with the director of Rajaji National Park, and the Divisional Forest Officers (DFOs) for Dehradun, Chakrata, and Kedarnath Wildlife Sanctuary for providing the required field permissions and assistance during the field surveys. We thank Mr. Aakash Goswami for his assistance during the field visits. All authors thank the three anonymous reviewers for their constructive comments and suggestions which considerably improved the manuscript and its readability.

Funding

This study is funded by Science and Engineering Research Board (SERB) through research project no. EEQ/2016/000164. The first author is thankful to the University Grants Commission (UGC), New Delhi, for CSIR-UGC senior research fellowship. The corresponding author acknowledges the Institution of Eminence (IoE), University of Delhi for providing additional funds for the study through Faculty Research Programme (FRP) grant (IoE/2021/12/FRP).

Author information

Authors and Affiliations

Authors

Contributions

S. K. and R. B conceptualized this study. S. K. collected the in situ soil CO2 efflux data and soil sampling, conducted laboratory experiments, performed statistical data analyses and wrote the original manuscript draft. K. S. R., P. L. U., and R. B. reviewed and edited the manuscript. All the authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Ratul Baishya.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2708 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushal, S., Rao, K.S., Uniyal, P.L. et al. Patterns and determinants of soil CO2 efflux in major forest types of Central Himalayas, India. Environ Monit Assess 195, 876 (2023). https://doi.org/10.1007/s10661-023-11470-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11470-9

Keywords

Navigation