Skip to main content
Log in

Forest vegetation of the Himalaya

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

This review deals with the forest vegetation of the Himalaya with emphasis on: paleoecological, phytogeographical, and phytosociological aspects of vegetation; structural and functional features of forest ecosystem; and relationship between man and forests.

The Himalayan mountains are the youngest, and among the most unstable. The rainfall pattern is determined by the summer monsoon which deposits a considerable amount of rain (often above 2500 mm annually) on the outer ranges. The amount of annual rainfall decreases from east to west, but the contribution of the winter season to the total precipitation increases. Mountains of these dimensions separate the monsoon climate of south Asia from the cold and dry climate of central Asia. In general, a rise of 270 m in elevation corresponds to a fall of 1°C in the mean annual temperature up to 1500 m, above which the fall is relatively rapid.

Large scale surface removals and cyclic climatic changes influenced the course of vegetational changes through geological time. The Himalayan ranges, which started developing in the beginning of the Cenozoic, earlier supported tropical wet evergreen forests throughout the entire area (presently confined to the eastern part). The Miocene orogeny caused drastic changes in the vegetation, so much so that the existing flora was almost entirely replaced by the modern flora. Almost all the dominant forest species of the Pleistocene continue to maintain their dominant status to the present. Presently the Himalayan ranges encompass Austro-Polynesian, Malayo-Burman, Sino-Tibetan, Euro-Mediterranean, and African elements. While the Euro-Mediterranean affinities are well represented in the western Himalayan region (west of 77°E long.), the Chinese and Malesian affinities are evident in the eastern region (east of 84°E long.). However, the proportion of endemic taxa is substantial in the entire region.

A representation of formation types in relation to climatic factors, viz., rainfall and temperature, indicates that boundaries between the types are not sharp. Formation types often integrate continuously, showing broad overlaps. Climate does not entirely determine the formation type, and the influence of soil, fire, etc., is also substantial. The ombrophilous broad leaf forests located in the submontane belt (< 1000 m) of the eastern region are comparable to the typical tropical rain forests. On the other extreme, communities above 3000 m elevation are similar to sub-alpine and alpine types. From favorable to less favorable environments, as observed with decreasing moisture from east to west, or with decreasing temperature from low to high elevations, the forests become increasingly open, shortstatured and simpler, with little vertical stratification. Ordination of forest stands distributed within 300–2500 m elevations of the central Himalaya, by and large indicates a continuity of communities, with scattered centers of species importance values in the ordination field. Within the above elevational transect, sal (Shorea robusta) and oak (Quercus spp.) forests may be designated as the climax communities, respectively, of warmer and cooler climates. The flora of a part of the central Himalayan region is categorized as therohemigeophytic and that of a part of the western Himalayan region as geochamaephytic.

An analysis of population structure over large areas in the central Himalaya, based on density-diameter distribution of trees, suggests that oldgrowth forests are being replaced by even-aged successional forests, dominated by a few species, such asPinus roxburghii. Paucity of seedlings of climax species, namelyShorea robusta andQuercus spp. over large areas is evident.

The Himalayan catchments are subsurface-flow systems and, therefore, are particularly susceptible to landslips and landslides. Loss of water and soil in terms of overflow is insignificant.

Studies on recovery processes of forest ecosystems damaged due to shifting cultivation or landslides indicate that the ecosystems can recover quite rapidly, at least in elevations below 2500 m. For example, on a damaged forest site, seedlings of climax species (Quercus leucotrichophora) appeared only 21 years after the landslide.

In the central Himalaya, the biomass of a majority of forests (163-787 t ha−1) falls within the range (200-600 t ha−1) given for many mature forests of the world, and the net primary productivity (found in the range of 11.0–27.4 t ha−1 yr−1) is comparable with the range of 20–30 t ha−1 yr−1 given for highly productive communities of favorable environments. In most of the forests of this region, the litter fall values (2.1-3.8 t C ha−1 yr−1) are higher than the mean reported for warm temperate forests (2.7 t C ha−1 yr−1). Of the total litter, the tree leaves account for 54–82% in the Himalayan forests.

The rate of decomposition of leaves in some broadleaf species of submontane belt (0.253-0.274% day−1) are comparable with those reported for some tropical rain forest species. Because of the paucity of microorganisms and microarthropods in the forest litter and soil, high initial C:N ratio and high initial lignin content in leaves, the rate of leaf litter decomposition inPinus roxburghii is markedly slower than in other species of the central Himalaya. The fungal species composition of the leaf litterof Pinus roxburghii is also distinct from those of other species.

A greater proportion of nutrients is accumulated in the biomass component of the Himalayan forests than in the temperate forests. Although litter fall is the major route through which nutrients return from biomass to the soil pool, a substantial proportion of the total return is in the form of throughfall and stemflow. Among the dominant species of the central Himalaya, retranslocation of nutrients from the senescing leaves was markedly greater inPinus roxburghii than inQuercus spp. andShorea robusta. Consequently, the C:N ratio of leaf litter is markedly higher inPinus roxburghii than in the other species. Immobilization of nutrients by the decomposers of the litter with high C:N ratio is one of the principal strategies through whichPinus roxburghii invades other forests and holds the site against possible reinvasion by oaks.

Observations on the seasonality of various ecosystem functions suggest that Himalayan ecosystems are geared to take maximum advantages of the monsoon period (rainy season).

Most of the human population depends on shifting-agriculture in the eastern region and on settled agriculture in the central and western regions. Either of these is essentially a forest-dependent cultivation. Each unit of agronomic energy produced in the settled agriculture entails about seven units of energy from forests. Consequently, forests with reasonable crown cover account for insignificant percentage of the land. Tea plantations and felling of trees for timber, paper pulp, etc., are some of the major commercial activities which adversely affected the Himalayan forests.

Résumé

Cette revue concerne la végétation forestière de l’Himalaya. Elle précise l’information concernant la paléoécologie, la phytogéographie, la phytosociologie, le structure et le fonctionnement des écosystèmes et le rapport entre l’homme et la forêt.

Les montagnes de l’Himalaya sont les plus jeunes et parmi les plus instables. La pluviométrie dépend surtout de la mousson d’été et les chaînes extérieures sont bien arrosées (>2500 mm par an). Les précipitations annuelles décroissent de l’Est vers l’Ouest tandis que la composante hivernale augmente. Ces montagnes séparent les climats de mousson de l’Asie du Sud des climats froids et secs de l’Asie Centrale.

L’érosion du sol sur une grand étendue et des changemenets cycliques du climat ont déterminé des changements dans le couvert végétal tout au long des temps géologiques. Les chaînes Himalayennes qui ont commencés leur soulèvement au commencement du coenozoïque étaient entièrement couvertes d’une forêt ombrophile tropicale. (Ce type se trouve encore de nos jours dans la partie orientale de l’Himalaya.) L’orogénie miocène provoqua de tels changements dans la végétation que la flore de cette époque a été entièrement remplacée par la flore moderne. Les espèces forestières dominantes du pleistocène gardent leur importance dans les forêts actuelles.

Des éléments floraux Austro-Polynésiens, Malais-Birmans, Sino-Tibetains, Euro-Méditerranéens et Africains sont actuellement présents sur les montagnes himalayennes. Tandis que les affinités Euro-Mediterranéennes sont bien représentées dans l’Himalaya occidental (à l’Ouest du 77° Est), les affinités Chinoises et Malaises sont évidentes dans la partie orientale (à l’Est de 84°E). Cependant la proportion des éléments endémiques est importante dans toute la région.

La relation entre les types de formations et les facteurs climatiques (pluviosité, température) indique que les limites entre les types sont approximatives. D’ailleurs, le climat lui même ne détermine pas exclusivement les types et les effets du sol, du feu, etc., peuvent être importantes. Les forêts feuillues ombrophiles localisées dans l’étage sous-montagnard (< 1000 m) de la région orientale sont comparables aux forêts ombrophiles tropicales typiques. A l’opposé les communautés qui se trouvent au-dessus de 3000 m d’altitude sont comparables aux types subalpins et alpins. En allant des conditions favorables vers le moins favorables soit par exemple d’Est en Ouest le long de l’axe de diminution des précipitations soit en suivant les gradient altitudinal de baisse des températures les forêts deviennent de plus en plus ouvertes, basses et structurellement simples avec peu de stratification verticale. L’ordination des peuplements forestières situés entre 300–2500 m dans l’Himalaya central indique une continuité des communautés avec des centres de valeurs d’importance des espèces dispersés dans le champ d’ordination. Dans ce transect altitudinal, les forêts à sal (Shorea robusta) et à chêne (Quercus spp.) peuvent être désignés comme des communautés climax pour les climats chaud et froid respectivement.

Le spectre biologique basé sur les formes biologiques de Raunkiaer est du type Théro-Hémi-Géophytique dans l’Himalaya central tandis que celui de l’Himalaya occidental est du type Géo-Chamaephytique.

L’analyse de la structure du peuplement couvrant une superficie assez importante dans l’Himalaya central basé sur la répartition des arbres par densité-diamètre suggère que les anciennes forêts sont en train d’être remplacées par des forêts équiennes de succession, dominées par un petit nombre d’espèces, tel quePinus roxburghii. La mauvaise régénération des espèces climax, à savoir le sal (Shorea robusta) et le chêne (Quercus) sur une aire assez vaste est un fait bien établi.

Les bassins versants de l’Himalaya sont du type à l’écoulement hypodermique et sont donc sensibles aux glissements de terrain. La perte d’eau et de sol en terme d’épanchement est peu important.

L’étude de la reconstitution des écosystèmes forestiers dégradés par les cultures itinérantes ou par les glissements de terrain montre que les écosystèmes endommagés peuvent se reconstituer assez rapidement au moins en dessous de 2500 m.

Par exemple, sur un site forestière dégradée, les plantules de l’espèce climax (Quercus leucotrichophora) sont réapparues seulement 21 ans après le glissement du terrain.

Dans l’Himalaya central, la biomasse de la majorité des forêts (163783 t ha−1) tombe dans la classe de la plupart des forêts du monde (200600 t ha−1) et la productivité nette primaire (11.0-27.4 t ha−1 an−1) est comparable à celle des meilleures forêts (20-30 t ha−1 an−1) soumises à des conditions favorables. Les valeurs de la chute de litière des forêts de cette région (2.1-3.8 t C ha−1 an−1) sont plus élevées que la moyenne de celles des forêts tempérées chaudes (2.7 t C ha−1 an−1). La contribution des feuilles d’arbre à la litière totale est entre 54 et 82 pourcent dans les forêts Himalayennes.

Le taux de décomposition des feuilles chez certains feuillus de l’étage sous-montagnard (0.253–0.274% par jour) est comparable à celui de certaines espèces de la forêt ombrophile. C’est à cause d’une pauvreté de la litière forestière et du sol en microorganismes et des microarthropodes, du rapport initial élevé C:N et du pourcentage initial élevé en lignine des feuilles, que le taux de décomposition des aiguilles dePinus roxburghii est significativement plus lent que chez les autres espèces de l’Himalaya central. D’ailleurs la composition de la flore fongique de la litière des aiguilles dePinus roxburghii est bien différente de celles des autres espèces.

Une plus grande proportion d’éléments biogéochimiques est accumulée dans la composante biomasse des forêts Himalayennes par rapport aux forêts tempérés.

Bien que la chute du litière constitue la voie principale par laquelle les éléments de la biomass retournent au sol, une fraction assez importante est restituée sous formes de pluviolessivats et d’écoulements sur le tronc.

Parmi les espèces dominantes d l’Himalaya central, la redistribution des éléments des feuilles senescentes est plus important chezPinus roxburghii que chezShorea ouQuercus. Par conséquent, le rapport C:N de la litière de feuille est plus élevé chez le pin que chez les autres espèces. L’immobilisation des éléments par les décomposeurs de la litière à rapport C:N élevé est une des stratégies principales par laquellePinus roxburghii envahit les autres forêts et évite la reconquête par les autres espèces.

L’étude saisonnière des divers fonctionnements de l’écosystème met en évidence des liens étroits avec la régime des pluies de mousson.

La majorité de la population humaine pratique la culture itinérante dans la région orientale et l’agriculture sédentaire dans les parties central et occidentale. Ces deux types d’agriculture sont très liés à la forêt. Chaque unité d’énergie agronomique produite en agriculture sédentaire demande sept unités d’énergie des forêts. Par conséquent, les forêts peu ouvertes à canopées assez fermées n’occupent plus qu’un pourcentage négligeable de ces régions. Les plantations de thé et l’exploitation forestière (bois d’oeuvre, pâte à papier, etc.) sont parmi les activités qui ont contribué à dégrader les forêts de l’Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Ahlgren, I. F. &C. E. Ahlgren. 1965. Effects of prescribed burning on soil microorganisms in a Minnesota jackpine forest. Ecology46: 304–310.

    Article  Google Scholar 

  • Anonymous. 1977. Himalaya: Ecologie-ethnologie. Editions du Centre National de la Recherche Scientifique, Paris.

  • Auden, J. B. 1949. Dykes in western India. A study of their relationship with the Deccan Traps. Trans. Natl. Inst. Sci. India3: 123–157.

    Google Scholar 

  • Awasthi, N. 1974. Neogene angiospermous woods. Pages 341–358in K. R. Surange, R. N. Lakhanpal & D. C. Bharadwaj (eds.), Aspects and appraisal of Indian palaeobotany. Birbal Sahni Institute of Palaeobotany, Lucknow.

    Google Scholar 

  • — 1982. Tertiary plant megafossils from the Himalaya—A review. Palaeobotanist30: 254–267.

    Google Scholar 

  • Bandhu, D. 1971. A study of the productive structure of tropical dry deciduous forest at Varanasi. Ph.D. Thesis. Banaras Hindu University, Varanasi.

    Google Scholar 

  • — 1973. Chakia Project. Tropical deciduous forest ecosystem. Pages 39–62in D. E. Reichle, R. V. O’Neill, J. S. Olson & L. Kern (eds.), Modelling forest ecosystems. Report of International Biological Programme/P.T. Section, Oak Ridge National Laboratory. Oak Ridge, Tennessee.

    Google Scholar 

  • Bartholomew, W. V., J. Meyer &H. Landelout. 1953. Mineral nutrient immobilization under forest and grass fallow in the Yangambi (Belgian Congo) region. Publications de l’Institut National pour l’Étude Agronomique de Congo Belge, Série Scientifique57: 1–27.

    Google Scholar 

  • Bartos, D. L. &R. S. Johnston. 1978. Biomass and nutrient content of Quaking Aspen at two sites in the Western United States. Forestry24: 273–280.

    Google Scholar 

  • Blasco, F. 1970. Aspects of the flora, and ecology of Savannas of the South Indian Hills. J. Bombay Nat. Hist. Soc.67: 522–534.

    Google Scholar 

  • — 1971a. Montagnes du Sud l’Inde. Forêts, savanes, l’écologie. Inst. Franc. Pondichéry. Tr. Sect. Sci. Tech.11: 1–436.

    Google Scholar 

  • — 1971b. Orophytes of South India and Himalayas. J. Indian Bot. Soc.50: 377–381.

    Google Scholar 

  • — 1977. Relations écologiques et floristiques entre l’Himalaya et les montagnes du Sud de l’ Inde. Pages 87–88in Himalaya: Ecologie-ethnologie. Editions du Centre National de la Recherche Scientifique, Paris.

    Google Scholar 

  • Boojh, R. &P. S. Ramakrishnan. 1981. Phenology of trees in a subtropical evergreen montane forest in north-east India. Geo-Eco-Trop5: 189–209.

    Google Scholar 

  • ——. 1982. Growth strategy of trees related to successional status. I. Architecture and extension growth. Forest Ecol. Managern.4: 359–374.

    Article  Google Scholar 

  • Bor, N. L. 1938. A sketch of the vegetation of the Aka hills, Assam. A synecological study. Indian Forest Rec. (N.S.), Bot.1: 103–121.

    Google Scholar 

  • Bormann, F. H. &G. E. Likens. 1979. Pattern and process in a forested ecosystem. Springer, New York.

    Google Scholar 

  • Borthakur, D. N., A. Singh, R. P. Awasthi &R. N. Rai. 1980. Shifting cultivation in the North-eastern region. Pages 330–342in Proc. national seminar on resources, development and environment in Himalayan region. Department of Science and Technology, Govt. of India, New Delhi.

    Google Scholar 

  • Bray, J. R. &J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr.27: 325–349.

    Article  Google Scholar 

  • — &E. Gorham. 1964. Litter production in the forests of the world. Advances Ecol. Res.2: 101–157.

    Google Scholar 

  • Burkill, I. H. 1924. The botany of the Abor expedition. A study of forests of Abor hills, Eastern Himalayas. Rec. Bot. Surv. India10: 1–420.

    Google Scholar 

  • Champion, H. G. 1923. The interaction betweenPinus longifolia (chir) and its habitat in the Kumaun hills. Indian Forester49: 342–356.

    Google Scholar 

  • — 1936. A preliminary survey of forest types of India and Burma. Indian Forest Rec. (N.S.)1: 1–36.

    Google Scholar 

  • — &S. K. Seth. 1968a. A revised survey of the forest types of India. Manager of Publications, Delhi.

    Google Scholar 

  • ——. 1968b. General silviculture for India. Manager of Publications, Delhi.

    Google Scholar 

  • Charles, R. P. 1957. Morphologie dentaire du Tahr et du Bonguetin espèces actuelles et subfossiles des gisements préhistoriques. Mammalia21: 136–141.

    Google Scholar 

  • Chatterjee, D. 1939. Studies on the endemic flora of India and Burma. J. Roy. Asiat. Soc., Bengal5: 19–67.

    Google Scholar 

  • Charurvedi, O. P. 1983. Biomass structure, productivity and nutrient cycling inPinus roxburghii forest. Ph.D. Thesis. Kumaun University, Nainital.

    Google Scholar 

  • — &J. S. Singh. 1982. Total biomass and biomasss production ofPinus roxburghii trees growing in all aged natural forests. Canad. J. Forest. Res.12(3): 632–640.

    Article  Google Scholar 

  • ——. 1984. Potential biomass energy from all-aged chir pine forest of Kumaun Himalaya. Biomass5(2): 161–165.

    Article  Google Scholar 

  • Christensen, O. 1975. Wood litter fall in relation to abscission, environmental factors and the decomposition cycle in a Danish oak forest. Oikos26: 187–195.

    Article  Google Scholar 

  • Clarke, C. B. 1898. On the sub-areas of British India, illustrated by the detailed distribution of the Cyperaceae in that Empire. J. Linn. Soc. (Lond.) Bot.34: 1–146.

    Google Scholar 

  • Connell, J. H. &R. O. Slatyer. 1977. Mechanism of succession in natural communities and their role in community stability and organization. Amer. Naturalist111: 1119–1144.

    Article  Google Scholar 

  • Cottam, G. 1949. The phytosociology of an oak wood in southwestern Wisconsin. Ecology30: 271–387.

    Article  Google Scholar 

  • Cowan, J. M. 1929. The forests of Kalimpong. An ecological account. Records of the Botanical Survey of India. Vol. 12. Botanical Survey of India, Calcutta.

    Google Scholar 

  • Croizat, L. 1968. The biogeography of India: A note on some of its fundamentals. Rec. Advances Trop. Ecol.2: 544–590.

    Google Scholar 

  • Dabral, B. G., P. Nath &R. Swarup. 1963. Some preliminary investigations on the rainfall interception by leaf litter. Indian Forester89: 112–116.

    Google Scholar 

  • — &B. K. Subba Rao. 1968. Interception studies in chir and teak plantation—New Forest. Indian Forest.94: 540–551.

    Google Scholar 

  • DeAngelis, D. L., R. H. Gardner &H. H. Shugart. 1980. Productivity of forest ecosystems studied during the IBP: The woodlands data set. Pages 567–672in D. E. Reichle (ed.), Dynamic properties of forest ecosystems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Deb, D. B. 1960. Forest types studied in Manipur. Indian Forest.86: 94–111.

    Google Scholar 

  • Dey, A. K. 1949. The age of the Bengal gap. Symposium on Satpura hypothesis of the distribution of Malayan fauna and flora to Peninsular India. Proc. Natl. Inst. Sci. India15: 409–410.

    Google Scholar 

  • Dhir, R. P. 1967. Pedological characteristics of some soils of the North-western Himalayas. J. Indian Soc. Soil Sci.15: 1–15.

    Google Scholar 

  • Dobremez, J. F. 1972. Carte écologique du Nepal. II. Région Jiri-Thodung 1/50000. Doc. Carte Veg. Alpes10: 9–24.

    Google Scholar 

  • — 1973. Carte écologique du Nepal. IV. Région Tarai Central. 1/250000. Documents de Cartographie Ecologique12: 1–16.

    Google Scholar 

  • — 1977. Les Cupulifères Himalayennes Repartition, écologie, signification biogé ographique. Pages 89–98in Himalaya: Ecologie-ethnologie. Editions du Centre National de la Recherche Scientifique, France.

    Google Scholar 

  • — &C. Jest. 1971. Carte écologique de la région Annapurna-Dhaulagiri. Doc. Carte Vég. Alpes11: 1–49.

    Google Scholar 

  • —,A. Maire &B. Yon. 1975. Carte écologique de Nepal I. Région Ankhu Khola-Trishuli 1/50,000. Documents de Cartographie Ecologique15: 1–20.

    Google Scholar 

  • — &P. R. Shakya. 1975. Carte écologique du Nepal. IV. Région Birat Nagar-Kang-chenjunga 1/250000. Documents de Cartographie Ecologique26: 33–48.

    Google Scholar 

  • Dudgeon, W. &L. A. Kenoyer. 1925. The ecology of Tehri-Garhwal. A contribution to the ecology of western Himalayas. J. Indian Bot. Soc.4: 233–285.

    Google Scholar 

  • Duvigneaud, P. &S. Denaeyer-De Smet. 1970. Biological cycling of minerals in temperate deciduous forests. Pages 199–255in D. E. Reichle (ed.), Analysis of temperate forest ecosystems. Springer-Verlag, New York.

    Google Scholar 

  • Edwards, P. J. 1977. Studies of mineral cycling in a montane rain forest in New Guinea. II. The production and disappearance of litter. J. Ecol.65: 971–992.

    Article  Google Scholar 

  • Franklin, J. E., T. Maeda, Y. Ohsumi, M. Matsui, H. Yagi &G. M. Hawk. 1979. Subalpine coniferous forests of Central Honshu, Japan. Ecol. Monogr.49(3): 311–334.

    Article  Google Scholar 

  • Ghildyal, B. P. 1980. Soil of the Garhwal and Kumaun Himalaya. Pages 120–137in J. S. Lall & A. D. Moddie (eds.), The Himalaya. Oxford University Press, New Delhi.

    Google Scholar 

  • Ghosh, R. C. 1956. Ecology of the coniferous forests of West Bengal—A study. Pages 117–118in Proc. IX Silvic. Conf. Part II. Forest Research Institute, Dehradun.

    Google Scholar 

  • Golley, F. B., J. T. McGinnis, R. G. Clements, G. I. Child &M. J. Duever. 1975. Mineral cycling in a tropical moist forest ecosystem. University of Georgia Press, Athens, Georgia.

    Google Scholar 

  • Gorrie, R. M. 1933. The Sutlej deodar, its ecology and timber production. Indian Forest Production. Indian Forest Rec.17: 1–240.

    Google Scholar 

  • Greenland, D. J. &J. M. L. Kowal. 1960. Nutrient content of the moist tropical forest of Ghana. Plant Soil12: 154–174.

    Article  CAS  Google Scholar 

  • Gresham, C. A. 1982. Litter fall patterns in mature loblolly and longleaf pine stands in coastal South Carolina. Forest Sci.28: 223–231.

    Google Scholar 

  • Grime, J. P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Amer. Naturalist111: 1161–1194.

    Google Scholar 

  • Grubb, P. J. &P. J. Edwards. 1982. Studies of mineral cycling in a montane rain forest in New Guinea. III. The distribution of mineral elements in the above-ground material. J. Ecol.70: 623–648.

    Article  CAS  Google Scholar 

  • Guha, R. 1983. The nature of forestry science. Peoples’ Particip. Sci. Techn. Bull.3(1): 101–113.

    Google Scholar 

  • Gupta, A. C. 1963. Annual precipitation and the vegetation of the dry temperate coniferous region of the N.W. Himalayas. J. Indian Bot. Soc.42: 313–318.

    Google Scholar 

  • Gupta, R. K. 1972. Bibliography on “Plant-ecology” in Bhutan, Sikkim and Tibet. Excerpta Bot., Sect. B, Sociol.12(3): 226–237.

    Google Scholar 

  • — 1981. Bibliography of the Himalayas. Gurgaon Indian Documentation Service, Gurgaon.

    Google Scholar 

  • — &J. S. Singh. 1962. Succession of vegetation types in the Tons Valley of Garhwal Himalaya. Indian Forester88: 289–296.

    Google Scholar 

  • Heath, G. W., M. K. Arnold &C. A. Edwards. 1966. Studies in leaf litter breakdown. I. Breakdown rates among leaves of different species. Pedobiologia6: 1–12.

    Google Scholar 

  • Hill, S. A. 1976. Meteorology of North-west Himalayas. Indian Meteorol. Mem.1(6): 376–419.

    Google Scholar 

  • Hingston, F. J., G. M. Dimmock &A. G. Turton. 1980. Nutrient distribution in a Jarrah (Eucalyptus marginata Don ex Sm.) ecosystem in South West Australia. Forest. Ecol. Managern.3: 183–207.

    Article  Google Scholar 

  • Hitchcock, J. T. 1977. Buying time. Population, trees, Liebig’s “law” and two Himalayan adaptive strategies. Pages 443–452in Himalaya Ecologie-ethnologie. Editions du Centre National de la Recherche Scientifique, Paris.

    Google Scholar 

  • Hooker, J. D. 1852. On the climate and vegetation of the temperate and cold regions of East Nepal and the Sikkim mountains. J. Hort. Soc. London7: 69–131.

    Google Scholar 

  • -. 1906. A sketch of flora of British India. London.

  • Hora, S. L. 1949. Satpura hypothesis of the distribution of the Malayan fauna and flora to Peninsular India. Proc. Natl. Inst. Sci. India15: 309–313.

    Google Scholar 

  • — 1950. Satpura hypothesis as aspect of Indian biogeography. Curr. Sci.19: 364–370.

    Google Scholar 

  • Horn, H. S. 1974. The ecology of secondary succession. Annual Rev. Ecol. Syst.5: 25–37.

    Article  Google Scholar 

  • Jain, S. K. &A. R. K. Sastry. 1980. Plant resources in the Himalayas. Pages 98–107in Proc. national seminar on resources, development and environment in the Himalayan region. Department of Science and Technology Govt. of India, New Delhi.

    Google Scholar 

  • Jenny, H., S. P. Gessels &F. T. Bingham. 1949. Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci.68: 419–432.

    Article  CAS  Google Scholar 

  • Johnson, F. L. &P. G. Risser. 1974. Biomass, annual net primary productivity and dynamics of six mineral elements in a postoak-blackjack oak forest. Ecology55: 1246–1258.

    Article  CAS  Google Scholar 

  • Jokela, E. J., C. A. Shannon &E. H. White. 1981. Biomass and nutrient equations for matureBetula papyrifera Marsh. Canad. J. Forest. Res.2: 298–304.

    Google Scholar 

  • Jordan, C. &P. G. Murphy. 1978. A latitudinal gradient of wood and litter production. Amer. Midl. Naturalist99: 415–434.

    Article  Google Scholar 

  • Jordan, C.F. 1977. Distribution of elements in a tropical montane rain forest. Trop. Ecol.18: 124–130.

    CAS  Google Scholar 

  • Kanai, H. 1963. Phytogeographical observations on the Japano-Himalayan elements. J. Fac. Sci. Univ. Tokyo. Ser. III Bot.8: 305–339.

    Google Scholar 

  • -. 1966. Phytogeography of eastern Himalaya. Pages 13–38in Flora of eastern Himalaya. University of Tokyo.

  • Kar, N. R. 1972. Some aspects of the Pleistocene geomorphology of the Himalaya. Geol. Surv. India Misc. Publ.15: 53–60.

    Google Scholar 

  • Kärenlampi, I. L. 1971. Weight loss of leaf litter on forest soil surface in relation to weather at Kevo Station, Finnish Lapland. Rep. Kevo. Subarctic Res. Station8: 101–103.

    Google Scholar 

  • Kartawinata, K. 1978. The “Kerangas” heath forest in Indonesia. Pages 145–153in J. S. Singh & B. Gopal (eds.), Glimpses of ecology. Professor R. Misra Commemoration Volume. International Scientific Publications, Jaipur.

    Google Scholar 

  • Kaul, O. N. &P. B. L. Srivastava. 1967. Nutrient uptake of fir (Abies pindrow) and spruce (Picea smithiana). Indian Forest93: 249–257.

    Google Scholar 

  • Kaul, R. N. &B. N. Ganguli. 1961. Studies on the introduction ofEucalyptus in the arid zone of India. Pages 626–637in Proc. X Silv. Conf. Forest Research Institute, Dehradun.

    Google Scholar 

  • Kaul, V. &Y. K. Sarin. 1976. Life-form classification and the biological spectrum of the flora of Bhaderwah. Trop. Ecol.17: 132–139.

    Google Scholar 

  • Kaushik, S. D. 1962. Climatic zones and their related socioeconomy in the Garhwal Himalaya. Geogr. Rev. India24: 22–41.

    Google Scholar 

  • Kenoyer, L. A. 1921. Forest formations and successions in the Sat Tal Valley, Kumaun Himalayas. J. Indian Bot. Soc.2: 236–258.

    Google Scholar 

  • Khajuria, H. 1980. The wild mammals of the western Himalayas. Pages 216–229in Proc. national seminar on resources, development and environment in the Himalayan region. Department of Science and Technology, Govt. of India, New Delhi.

    Google Scholar 

  • Killingbeck, K. T. &M. K. Wali. 1978. Analysis of a North Dakota gallery forest: Nutrient, trace element and productivity relations. Oikos30: 29–60.

    Article  CAS  Google Scholar 

  • Lakhanpal, R. N. 1970. Tertiary floras of India and their bearing on the historical geology of the region. Taxon19(5): 675–694.

    Article  Google Scholar 

  • Legris, P. &V. M. Meher-Homji. 1968. Floristic elements in the vegetation of India. Rec. Advances Trop. Ecol.2: 536–543.

    Google Scholar 

  • Lieth, H. 1973. Primary production: Terrestrial ecosystems. Human Ecol.1: 303–322.

    Article  Google Scholar 

  • — 1975. Primary production of the major vegetation units of the world. Pages 203–215in H. Lieth & R. H. Whittaker (eds.), Primary productivity of the biosphere. Springer-Verlag, New York.

    Google Scholar 

  • Longman, K. A. &K. K. Jenik. 1974. Tropical forest and its environment. Longman, London and New York.

    Google Scholar 

  • Loucks, O. L. 1970. Evolution of diversity, efficiency, and community stability. Amer. Zool.10: 17–25.

    CAS  Google Scholar 

  • Madgwick, H. A. I., P. Beets &S. Gallagher. 1981. Dry matter accumulation, nutrient and energy content of the aboveground portion of 4-year old stands ofEucalyptus nitens andE.fastigata. New Zealand J. Forest Sci.11: 53–59.

    Google Scholar 

  • Madras Group. 1983a. The story of scientific forestry in India: Some highlights. People’s Particip. Sci. Techn. Bull.3(1): 31–67.

    Google Scholar 

  • —. 1983b. The vision of modern forestry: What it is doing to our forests. People’s Particip. Sci. Techn. Bull.3(1): 68–100.

    Google Scholar 

  • Mani, M. S. (ed.). 1974. Ecology and biogeography in India. Dr. W. Junk, The Hague.

    Google Scholar 

  • Medlicott, H. B. & W. T. Blandford. 1879. A manual of geology of India, Calcutta.

  • Meher-Homji, V. M. 1970. Some phytogeographic aspects of Rajasthan. Vegetatio21: 299–320.

    Article  Google Scholar 

  • — 1972. Himalayan plants on South Indian hills: Role of Pleistocene glaciation vs. long distance dispersal. Sci. & Cult.38: 8–12.

    Google Scholar 

  • — 1974. Disjunct distributions in plant kingdom. Sci. & Cult.40: 217–227.

    Google Scholar 

  • — &K. C. Misra. 1973. Phytogeography of the Indian sub-continent. Pages 9–89in R. Misra, B. Gopal & J. S. Singh (eds.), Progress of plant ecology in India. Today and Tomorrow Publ., New Delhi.

    Google Scholar 

  • Mehra, M. S., U. Pandey &J. S. Singh. 1983. Restitution of reproductive biomass of overstorey tree species in certain forests of Kumaun Himalaya. Trop. Pl. Sci. Res.1(2): 175–180.

    Google Scholar 

  • —,P. C. Pathak &J. S. Singh. 1985. Nutrient movement in litter fall and precipitation components for Central Himalayan forests. Ann. Bot.55: 153–170.

    CAS  Google Scholar 

  • — &J. S. Singh. 1985. Pattern of wood litter fall in five forests located along an altitudinal gradient in central Himalya. Vegetatio63: 3–11.

    Article  Google Scholar 

  • Mellinger, M. V. &S. J. McNaughton. 1975. Structure and function of successional vascular plant communities in Central New York. Ecol. Monogr.45: 161–162.

    Article  Google Scholar 

  • Meusel, H. 1971. Mediterranean elements in the flora and vegetation of the west Himalaya. Pages 53–72in P. H. Davis, P. C. Harper & I. C. Hedge (eds.), Plant life of Southwest Asia. Bot. Soc. Edinburgh.

    Google Scholar 

  • Mishra, B. K. &P. S. Ramakrishnan. 1981. The economic yield and energy efficiency of hill agro-ecosystems at higher elevations of Meghalaya in North-Eastern India. Oecol. Applic.2: 369–389.

    Google Scholar 

  • ——. 1982. Energy flow through a village ecosystem with slash and burn agriculture in north-eastern India. Agricultural Systems9: 57–72.

    Article  Google Scholar 

  • ——. 1983a. Secondary succession subsequent to slash and burn agriculture at higher elevations of north-east India. Oecol. Applic.4: 95–107.

    Google Scholar 

  • ——. 1983b. Secondary succession subsequent to slash and burn agriculture at higher elevations of north-east India. II. Nutrient cycling. Oecol. Applic.4: 237–245.

    CAS  Google Scholar 

  • Mohan, N. P. 1933. Ecology ofPinus longifolia with particular reference to Kangra and Hoshiarpur forest divisions. Indian Forester59: 812–826.

    Google Scholar 

  • — &G. S. Puri. 1956. Himalayan conifers. V. The succession of forest communities in chir pine (Pinus roxburghii) forests of Punjab and Himachal Pradesh. Indian Forester82: 356–364.

    Google Scholar 

  • ——. &A. C. Gupta. 1956. The Himalayan conifers. IVA. Case study of some soil profiles under some forest communities in the Bashahr Himalayas. Indian Forester82: 295–307.

    Google Scholar 

  • Moral, R. del. 1979. High elevation vegetation of the Enchantment Lakes Basin, Washington. Canad. J. Bot.57: 1111–1130.

    Article  Google Scholar 

  • Mueller-Dombois, D. &H. Ellenberg. 1974. Aims and methods of vegetation ecology. John Wiley & Sons, New York.

    Google Scholar 

  • Mukerji, B. K. &N. K. Das. 1940. Studies on Kumaun hill soils. Indian J. Agric. Sci.10: 990–1020.

    CAS  Google Scholar 

  • ——. 1941. Effect of terracing and cultivation on soil types of Choubattia. Indian J. Agric. Sci.11: 914–953.

    Google Scholar 

  • Muller, R. N. &F. H. Bormann. 1976. Role ofErythronium americanum Ker. in energy flow and nutrient dynamics of a northern hardwood forest ecosystem. Science193: 1126–1128.

    Article  PubMed  CAS  Google Scholar 

  • Murthy, R. S. &S. Pandey. 1980. Soil and land use in the Himalayan region. Pages 40–45in Proc. national seminar on resources, development and environment in the Himalayan region. Department of Science and Technology, Govt. of India, New Delhi.

    Google Scholar 

  • Negi, K. S., Y. S. Rawat &J. S. Singh. 1983. Estimation of biomass and nutrient storage in a Himalayan moist temperate forest. Canad. J. Forest Res.13: 1185–1196.

    CAS  Google Scholar 

  • Numata, M. 1965. Ecological study and mountaineering of Mt. Nambur, in eastern Nepal. Univ. of Chiba, Japan.

    Google Scholar 

  • Nye, P. H. 1958. The relative importance of fallow and soils in storing plant nutrients in Ghana. J. W. African Sci. Assoc.4: 31–50.

    CAS  Google Scholar 

  • Odum, E. P. 1969. The strategy of ecosystem development. Science164: 262–270.

    Article  PubMed  CAS  Google Scholar 

  • Osmaston, A. E. 1922. Notes on the forest communities of the Garhwal Himalayas. J. Ecol.10: 129–167.

    Article  Google Scholar 

  • Ovington, J. D., D. Heitkarop &D. Lawrence. 1963. Plant biomass and productivity of prairie-savannah, oak wood and maize field ecosystems. Ecology44: 52–63.

    Article  Google Scholar 

  • — &H. A. I. Madgwick. 1959. The growth and composition of natural stands of birch. Plant Soil10: 389–399.

    Article  CAS  Google Scholar 

  • Pande, D. C. 1956. Progress of the sal natural regeneration in Uttar Pradesh under the normal prescriptions of working plans. Pages 91–96in IX Silvic. Conf. Part I. Forest Research Institute, Dehradun.

    Google Scholar 

  • Pandey, A. N., P. C. Pathak &J. S. Singh. 1983. Water, sediment and nutrient movement in certain forested and non-forested sites in Kumaun Himalaya. Forest Ecol. Managern.7: 19–29.

    Article  CAS  Google Scholar 

  • — &J. S. Singh. 1985. Mechanism of ecosystem recovery: A case study from Kumaun Himalaya. Reclam. Reveg. Res.3: 271–292.

    CAS  Google Scholar 

  • Pandey, U. &J. S. Singh. 1981a. A quantitative study of the forest floor, litter fall and nutrient return in an oak-conifer forest in Himalaya. I. Composition and dynamics of forest floor. Oecol. Generalis2: 49–61.

    Google Scholar 

  • ——. 1981b. A quantitative study of the forest floor, litter fall and nutrient return in an oak-conifer forest in Himalaya. II. Pattern of litter fall and nutrient return. Oecol. Generalis2: 83–99.

    Google Scholar 

  • ——. 1982. Leaf litter decomposition in an oak-conifer forest in Himalaya: The effects of climate and chemical composition. Forestry55: 47–59.

    Article  CAS  Google Scholar 

  • ——. 1984a. Energy flow relationships between agro- and forest-ecosystems in Central Himalaya. Environ. Conserv.10: 343–345.

    Google Scholar 

  • ——. 1984b. Nutrient changes and release during decomposition of leaf litter in an Himalayan oak-conifer forest. Canad. J. Bot.62(9): 1824–1831.

    Article  CAS  Google Scholar 

  • ——. 1984c. Energetics of hill agroecosystems: A case study from Central Himalaya. Agric. Syst.13: 83–96.

    Article  Google Scholar 

  • Pathak, P. C. 1983. Vegetational hydrology and its impact on nutrient cycling in selected forest ecosystems of Kumaun Himalaya. Ph.D. Thesis. Kumaun University, Nainital.

    Google Scholar 

  • —,A. N. Pandey &J. S. Singh. 1983. Partitioning of rainfall by certain forest stands in Kumaun Himalaya. Trop. PL Sci. Res.1(2): 123–126.

    Google Scholar 

  • ———. 1984. Overland flow, sediment output and nutrient loss from certain forested sites in the central Himalaya, India. J. Hydrol.71: 239–251.

    Article  Google Scholar 

  • ———. 1985. Apportionment of rainfall in Central Himalayan forest (India). J. Hydrol.76: 319–332.

    Article  Google Scholar 

  • — &J. S. Singh. 1984. Nutrients in precipitation components for the pine and oak forests in Kumaun Himalaya. Tellus36: 44–49.

    Google Scholar 

  • Patriat, P. &J. Achache. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature311: 615–621.

    Article  Google Scholar 

  • Prakash, U. 1965. A survey of the fossil dicotyledonous woods from India and the far east. J. Paleontol.39: 815–827.

    Google Scholar 

  • — 1972. Palaeoenvironmental analysis of Indian Tertiary floras. Geophytology2(2): 178–205.

    Google Scholar 

  • — 1975. Fossil woods from the Lower Siwalik beds of Himachal Pradesh. Palaeobotanist22: 192–210.

    Google Scholar 

  • — 1979. Some more fossil woods from the Lower Siwalik beds of Himachal Pradesh, India. Himalayan Geol.8: 61–81.

    Google Scholar 

  • Proctor, J., J. M. Anderson, P. Chai &H. W. Vallack. 1983. Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak II. Litter fall, litter standing crop and preliminary observations on herbivory. J. Ecol.71: 261–283.

    Article  Google Scholar 

  • Puri, G. S. 1960a. Indian forest ecology. Vol. I. Oxford Book and Stationery Co., New Delhi.

    Google Scholar 

  • — 1960b. Indian forest ecology. Vol. II. Oxford Book and Stationery Co., New Delhi.

    Google Scholar 

  • —,V. M. Meher-Homji, R. K. Gupta &S. Puri. 1983. Forest ecology, phytogeography and forest conservation. Oxford Publ. Co., New Delhi.

    Google Scholar 

  • Raina, B. N., N. B. Hukku &R. V. Chalapati Rao. 1980. Geological features of the Himalayan region, with special reference to their impact on environmental appreciation and environmental management. Pages 1–19in Proc. national seminar on resources, development and environment in the Himalayan region. Department of Science and Technology, Govt. of India, New Delhi.

    Google Scholar 

  • Ralhan, P. K., R. K. Khanna, S. P. Singh &J. S. Singh. 1985a. Phenological characteristics of the tree layer of Kumaun Himalayan forests. Vegetatio60: 91–101.

    Article  Google Scholar 

  • ————. 1985b. Certain phenological characters of the shrub layer of Kumaun Himalayan forests. Vegetatio63: 113–120.

    Article  Google Scholar 

  • —,A. K. Saxena &J. S. Singh. 1982. Analysis of forest vegetation at and around Nainital in Kumaun Himalaya. Proc. Indian Natl. Sci. Acad.48B: 122–138.

    Google Scholar 

  • Ramakrishnan, P. S. &O. P. Toky. 1981. Soil nutrient status of hill agro-ecosystems and recovery pattern after slash and burn agriculture (jhum) in north-eastern India. Plant Soil60: 41–64.

    Article  CAS  Google Scholar 

  • -, -,B. K. Mishra & K. G. Saxena. 1981. Slash and burn agriculture in northeast India. Pages 570–587in H. A. Mooney, T. M. Bonnicksen, N. L. Christensen, J.E. Lotan & W. A. Reiners (eds.), Fire regimes and ecosystem properties. USDA Forest Service General Technical Report WO-26.

  • Rao, P. B. 1984. Regeneration of some trees of Western Kumaun Himalaya. Ph.D. Thesis. Kumaun University, Nainital.

    Google Scholar 

  • — &S. P. Singh. 1985. Population dynamics of foothill sal (Shorea robusta Gaertn. f.) forest in Kumaun Himalaya. Œcol. PL6: 161–166.

    Google Scholar 

  • Rao, Y. P. 1980. The Himalayas—Their climate. Pages 20–39in Proc. national seminar on resources, development and environment in the Himalayan region. Department of Science and Technology, Govt. of India, New Delhi.

    Google Scholar 

  • Rapp, M. 1969. Production de litière et apport au sol d’éléments minéraux dans deux ecosystems méditerranéens: La forêt deQuercus ilex L. et la garrigue deQuercus coccifera L. Oecol. Pl.4(4): 377–410.

    Google Scholar 

  • Raunkiaer, C. 1934. The life forms of plants and statistical plant geography. Clarendon Press, Oxford.

    Google Scholar 

  • Rawat, A. S. 1981. Forest management in Garhwal during the British rule. Pages 273–285in J. S. Singh, S. P. Singh & C. Shastri (eds.), Science and rural development in mountains. Gyanodaya Prakashan, Nainital, India.

    Google Scholar 

  • — 1985. Forest movement in U. P. Himalayas: 1906–1947. Pages 248–259in J. S. Singh (ed.), Environmental regeneration in the Himalaya: Concepts and strategies. Central Himalayan Environment Association, Nainital, India.

    Google Scholar 

  • Rawat, Y. S. 1983. Plant biomass, net primary production and nutrient cycling in oak forests. Ph.D. Thesis. Kumaun University, Nainital.

    Google Scholar 

  • —,U. Pandey, J. S. Singh &S. P. Singh. 1983. The U. P. Himalaya: Ecological perspectives. Pages 47–64in O. P. Singh (ed.), The Himalaya: Climate and geography. Rajesh Publ., New Delhi.

    Google Scholar 

  • Raychaudhri, S. P., R. R. Agarwal, N. R. Dutta Vishwas, S. P. Gupta &P. K. Thomas. 1963. Soils of India. Indian Council of Agricultural Research, New Delhi.

    Google Scholar 

  • Razi, B. A. 1955. Some observations on plants of South Indian hilltops and their distribution. Proc. Natl. Inst. Sci. India21B: 79–89.

    Google Scholar 

  • Reiners, W. A. 1972. Structure and energetics of three Minnesota forests. Ecol. Monogr.42: 71–94.

    Article  Google Scholar 

  • Rice, E. L. 1974. Allelopathy. Academic Press, New York.

    Google Scholar 

  • Rochow, J. J. 1972. A vegetational description of a mid Missouri forest using gradient analysis techniques. Amer. Midl. Naturalist87(2): 377–396.

    Article  Google Scholar 

  • Rodin, L. E. &N. P. Bazilevich. 1967. Production and mineral cycling in terrestrial vegetation (Engl. transi., G. E. Fogg). Oliver and Boyd, Edinburgh and London.

    Google Scholar 

  • Roy Chowdhury, M. K. 1973. Status of recent work of the Geological Survey of India in the Himalaya and the programme of work in the field of geodynamics. Pages 13–24in Seminar on geodynamics of the Himalayan region. Natl. Geophys. Res. Inst., Hyderabad.

    Google Scholar 

  • Saxena, A. K. 1979. Ecology of vegetation complex of northwestern catchment of river Gola. Ph.D. Thesis. Kumaun University, Nainital.

    Google Scholar 

  • —,P. Pandey &J. S. Singh. 1982. Biological spectrum and other structural-functional attributes of the vegetation of Kumaun Himalaya. Vegetatio49: 111–119.

    Article  Google Scholar 

  • —,U. Pandey &J. S. Singh. 1978. On the ecology of oak forests in Nainital hills, Kumaun Himalaya. Pages 167–180in J. S. Singh & B. Gopal (eds.), Glimpses of ecology: Professor R. Misra commemoration volume. International Scientific Publishers, Jaipur.

    Google Scholar 

  • — &J. S. Singh. 1982a. A phytosociological analysis of woody species in forest communities of a part of Kumaun Himalaya. Vegetatio50: 3–22.

    Article  Google Scholar 

  • ——. 1982b. Quantitative profile structure of certain forests in the Kumaun Himalaya. Proc. Indian Acad. Sci. B91: 529–549.

    Google Scholar 

  • ——. 1984. Tree population structure of certain Himalayan forest associations and implications concerning future composition. Vegetatio58: 61–69.

    Article  Google Scholar 

  • —,S. P. Singh &J. S. Singh. 1984. Population structure of forests of Kumaun Himalaya: Implications for management. J. Environ. Managern.19: 307–324.

    Google Scholar 

  • Schweinfurth, U. 1957. Die horizontale und vertikale Verbreitung der Vegetation in Himalaya. Bonner Geogr. Abh.20: 1–372.

    Google Scholar 

  • — 1968. Vegetation of the Himalaya. Pages 110–136in Mountains and rivers of India, 21st Intern. Geogr. Congr. New Delhi.

    Google Scholar 

  • Shanks, R. E. &J. S. Olson. 1961. First year breakdown of leaf litter in Southern Appalachian forests. Science134: 194–195.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, A. P., J. S. Bisht &J. S. Singh. 1984. Microarthropods associated with certain litter species in Kumaun Himalaya. Pedobiologia27: 229–236.

    Google Scholar 

  • Sharma, E. &R. S. Ambasht. 1984. Seasonal variation in nitrogen fixation by different ages of root nodules ofAlnns nepalensis plantations in the eastern Himalayas. J. Appl. Ecol.21: 265–270.

    Article  CAS  Google Scholar 

  • Sharma, V. K. 1971. Ecology ofShorea robusta Gaertn. andBuchanania lanzan Spreng, at Varanasi forests. Ph.D. Thesis. Banaras Hindu University, Varanasi.

    Google Scholar 

  • Shelton, M. G., L. E. Nelson, G. L. Switzer &B. G. Blackmon. 1981. The concentration of nutrients in tissues of plantations-grown Eastern Cottonwood (Populus deltoides Bart.). Mississipi Agric. Forest. Exptl. Station Tech. Bull. 106, Mississipi State Univ., Mississippi.

    Google Scholar 

  • Shrestha, T. B. 1982. Ecology and vegetation of north-west Nepal (Kamali Region). Royal Nepal Academy, Kathmandu.

    Google Scholar 

  • Shukla, R. P. &P. S. Ramakrishnan. 1982. Phenology of trees in a subtropical humid forest in northeastern India. Vegetatio49: 103–109.

    Article  Google Scholar 

  • Singh, H. P. 1982. Tertiary palynology of the Himalaya. A review. Palaeobotanist30: 268–278.

    Google Scholar 

  • Singh, J. &P. S. Ramakrishnan. 1981. Biomass and nutrient movement through litter inShorea robusta Gaertn. plantations in Meghalaya. Proc. Indian. Natl. Sci. Acad. B.47: 852–860.

    CAS  Google Scholar 

  • ——. 1982a. Structure and function of a sub-tropical humid forest of Meghalaya. I. Vegetation, biomass and its nutrients. Proc. Indian Acad. Sci.B 91: 241–253.

    Google Scholar 

  • ——. 1982b. Structure and function of a sub-tropical humid forest of Meghalaya III. Nutrient flow through water. Proc. Indian Acad. Sci.B 91: 269–280.

    Google Scholar 

  • Singh, J. S. &O. P. Chaturvedi. 1982. Photosynthetic pigments on plant bearing surfaces in the Himalaya. Photosynthetica16(1): 101–114.

    CAS  Google Scholar 

  • — &O. P. Goel (eds.) 1983. Integrated study of natural resources and environment of parts of Kumaun Himalaya through remote sensing. Final report submitted to the ISRO, Bangalore, Kumaun University, Nainital.

    Google Scholar 

  • — &S. R. Gupta. 1977. Plant decomposition and soil respiration in terrestrial ecosystems. Bot. Rev.43: 449–528.

    CAS  Google Scholar 

  • —,A. N. Pandey &P. C. Pathak. 1983. A hypothesis to account for the major pathway of soil loss from Himalaya. Environ. Conserv.10: 343–345.

    Google Scholar 

  • —,U. Pandey &A. K. Tiwari. 1984. Man and forests: A central Himalayan case study. Ambio13(2): 80–87.

    Google Scholar 

  • —,Y. S. Rawat &O. P. Chaturvedi. 1984. Replacement of oak forest with pine in the Himalaya affects the nitrogen cycle. Nature311: 54–56.

    Article  Google Scholar 

  • — &S. P. Singh. 1984a. An integrated ecological study of eastern Kumaun Himalaya, with emphasis on natural resources. Vol. 1. Studies with regional perspectives. Final Report (HCS/DST/187/76). Kumaun University, Nainital.

    Google Scholar 

  • ——. 1984b. An integrated ecological study of eastern Kumaun Himalaya, with emphasis on natural resources. Vol. 2. Site specific studies. Final Report (HCS/ DST/187/76). Kumaun University, Nainital.

    Google Scholar 

  • ——. 1984c. An integrated ecological study of eastern Kumaun Himalaya, with emphasis on natural resources. Vol. 3. Synthesis and summary. Final Report (HCS/DST/187/76). Kumaun University, Nainital.

    Google Scholar 

  • ——.,A. K. Saxena &Y. S. Rawat. 1984. India’s Silent Valley and its threatened rain-forest ecosystems. Environ. Conserv.11: 223–233.

    Google Scholar 

  • —,A. K. Tiwari &A. K. Saxena. 1985. Himalayan forests: A net source of carbon to the atmosphere. Environ. Conserv.12: 67–69.

    CAS  Google Scholar 

  • Singh, K. P. &R. Misra. 1978. Structure and functioning of natural, modified and silvicultural ecosystems of eastern Uttar Pradesh. Final Technical Report MAB Project I, Banaras Hindu University, Varanasi.

    Google Scholar 

  • Singh, Rajendra P. 1979. Primary production and energy dynamics of tropical dry deciduous forest in Chandraprabha region, Varanasi. Ph.D. Thesis. Banaras Hindu University, Varanasi.

    Google Scholar 

  • Singh, Ram P. 1974. A study of primary productivity and nutrient cycling in Chakia forest, Varanasi. Ph.D. Thesis. Banaras Hindu University, Varanasi.

    Google Scholar 

  • Singh, S. 1929. The effect of climate on the conifers in Kashmir. Indian Forester55: 189–203.

    Google Scholar 

  • Singh, S. P., R. K. Khanna &J. S. Singh. 1985. Accumulation in wood: A nutrient-conserving strategy of tropical forests. Environ. Conserv.12: 170–173.

    Google Scholar 

  • —,P. K. Ralhan &J. C. Tewari. 1985. Stability of Himalayan climax oak forests in view of resilience hypothesis. Environ. Conserv.12: 73–75.

    Google Scholar 

  • — &J. S. Singh. 1985. Structure and function of forest ecosystems of Central Himalaya: Implications for management. Pages 85–113in J. S. Singh (ed.), Environmental regeneration in Himalaya: Concepts and strategies. Central Himalayan Environment Association, Nainital, India.

    Google Scholar 

  • Smith, W. H., F. H. Bormann &G. E. Likens. 1968. Response of chemoautotrophic nitrifiers to forest cutting. Soil Sci.106: 471–473.

    Article  CAS  Google Scholar 

  • Spate, O. H. K. 1967. India and Pakistan: A general and regional geography. Methuen & Co., London.

    Google Scholar 

  • Stainton, J. D. A. 1977. Some problems of Himalayan plant distribution. Pages 99–102in Himalaya: Ecologie-ethnologie. Editions du Centre National de la Recherche Scientifique, Paris.

    Google Scholar 

  • Stark, N. 1971. Nutrient cycling II: Nutrient distribution in Amazonian vegetation. Trop. Ecol.12: 176–201.

    Google Scholar 

  • Stebbing, E. P. 1922. The forests of India. Vol. I. A. J. Reprinters Agency, New Delhi.

    Google Scholar 

  • — 1923. The forests of India. Vol. II. A. J. Reprinters Agency, New Delhi.

    Google Scholar 

  • — 1926. The forests of India. Vol. III. A. J. Reprinters Agency, New Delhi.

    Google Scholar 

  • Subba Rao, B. K., B. G. Dabral &S. K. Pande. 1972. Litter production in forest plantation of chir (Pinus roxburghii), teak (Tectona grandis) and sal (Shorea robusta) at New Forest, Dehra Dun. Pages 235–243in P. M. Golley & F. B. Golley (eds.), Tropical ecology with an emphasis on organic production. University of Georgia, Athens.

    Google Scholar 

  • Tanner, E. V. J. 1981. The decomposition of leaf litter in Jamaican montane forests. J. Ecol.69: 263–275.

    Article  Google Scholar 

  • Tewari, J. C. 1982. Vegetational analysis along altitudinal gradients around Nainital. Ph.D. Thesis. Kumaun University, Nainital.

    Google Scholar 

  • — &J. S. Singh. 1983. Application of aerial photo-analysis for assessment of vegetation in Kumaun Himalaya. I. Ranibagh to Nainapeak-Kilbari. Proc. Indian Natl. Sci. Acad. B49: 336–347.

    Google Scholar 

  • — &S. P. Singh. 1981. Vegetation analysis of a forest lying in transitional zone between lower and upper Himalayan moist temperate forests. Pages 104–119in G. S. Paliwal (ed.), The vegetational wealth of Himalaya. Puja Publishers, New Delhi.

    Google Scholar 

  • ——. 1985. Analysis of woody vegetation in a mixed oak forest of Kumaun Himalaya. Proc. Indian Natl. Sci. Acad.51B: 332–347.

    Google Scholar 

  • Tewary, C. K., U. Pandey &J. S. Singh. 1982. Soil and litter respiration rates in different microhabitats of a mixed oak conifer forest and their control by edaphic conditions and substrate quality. Plant Soil65: 233–238.

    Article  Google Scholar 

  • Thomas, W. A. 1968. Decomposition of loblolly pine needles with and without the addition of dogwood leaves. Ecology49: 568–571.

    Article  Google Scholar 

  • Thompson, T. 1852. Sketch of the climate and vegetation of the Himalaya. J. Hort. Soc. London6: 245–258.

    Google Scholar 

  • Thornthwaite, C. W. 1931. The climates of North America; according to a new classification. Geogr. Rev. (New York)21: 633–655.

    Google Scholar 

  • Tiwari, A. K., A. K. Saxena &J. S. Singh. 1985. Inventory of forest biomass for Indian Central Himalaya. Pages 236–247in J. S. Singh (ed.), Environmental regeneration in the Himalaya: Concepts and strategies. Central Himalayan Environment Association, Nainital, India.

    Google Scholar 

  • — &J. S. Singh. 1984. Mapping forest biomass in India through aerial photographs and nondestructive field sampling. Appl. Geogr.4: 151–165.

    Article  Google Scholar 

  • —,J. C. Tewari &J. S. Singh. 1983. Application of aerial photo-analysis for assessment of vegetation in Kumaun Himalaya. II. Kathgodam to Okhal Kanda. Proc. Indian Natl. Sci. Acad. B49: 421–435.

    Google Scholar 

  • Toky, O. P. &P. S. Ramakrishnan. 1981a. Run-off and infiltration losses related to shifting agriculture (jhum) in north eastern India. Environ. Conserv.8: 313–321.

    Article  CAS  Google Scholar 

  • ——. 1981b. Cropping and yields in agricultural systems of north-eastern India. Agro-Ecosystems70: 11–25.

    Article  Google Scholar 

  • ——. 1982. A comparative study of the energy budget of hill agroecosystems with emphasis on the slash and burn system (Jhum) at lower elevations of North-eastern India. Agric. Syst.9: 143–154.

    Article  Google Scholar 

  • ——. 1983a. Secondary succession following slash and burn agriculture in north-eastern India. I. Biomass, litter fall and productivity. J. Ecol.71: 735–745.

    Article  Google Scholar 

  • ——. 1983b. Secondary succession following slash and burn agriculture in north-eastern India. II. Nutrient cycling. J. Ecol.71: 747–757.

    Article  Google Scholar 

  • Tripathi, C. &P. R. Chandra. 1972. Fossils from the Karewas near Nichanoma, Kashmir. Geol. Surv. India Misc. Publ.15: 261–264.

    Google Scholar 

  • Troll, C. 1939. Das Pflanzenkeid des Nanga Parbat. Begleitwarte zur Vegetations-Karte der Nanga-Parbat-Gruppe (NW-Himalaya)1: 50,000. Wiss. Veröff. Deutsch. Mus. Länderk., N.F.7: 151–180.

    Google Scholar 

  • Troup, R. S. 1921. The silviculture of Indian trees. Vols. I-III. Clarendon Press, Oxford.

    Google Scholar 

  • Tucker, R. P. 1983. The British Colonial system and the forests of the Western Himalaya. Pages 1815–1914 in R. P. Tucker &J. F. Richards (eds.), Global deforestation and the nineteenth-century world economy. Duke Press Policy Studies, Durham, North Carolina.

    Google Scholar 

  • UNESCO. 1973. International classification and mapping of vegetation, ecology, and conservation.6: 1–93. UNESCO, Paris.

    Google Scholar 

  • Upadhyay, V. P., U. Pandey &J. S. Singh. 1985. Effect of habitat on decomposition of standard leaf-litter species. Biol. Fert. Soils1: 201–207.

    Article  Google Scholar 

  • — &J. S. Singh. 1985a. Nitrogen dynamics of decomposing hardwood leaf litter in a Central Himalayan forest. Soil Biol. Biochem.17: 827–830.

    Article  Google Scholar 

  • ——. 1985b. Decomposition of woody branch litter on an altitudinal transect in the Himalaya. Vegetatio64: 49–54.

    Article  Google Scholar 

  • Upreti, N. 1982. A study on phytosociology and state of regeneration of oak forests at Nainital. Ph.D. Thesis. Kumaun University, Nainital.

    Google Scholar 

  • —,J. C. Tewari &S. P. Singh. 1985. The oak forests of the Kumaun Himalaya (India): Composition, diversity and regeneration. Mountain Res. Developm.5: 163–174.

    Article  Google Scholar 

  • Valdiya, K. S. 1970. Simla slates: The Precambrian flysch of the lesser Himalaya, its turbidites, sedimentary structures and paleocurrents. Bull. Geol. Soc. Amer.81: 451–467.

    Article  Google Scholar 

  • — &S. B. Bhatia (eds.). 1980. Stratigraphy and correlations of lesser Himalayan formations. Hindustan Publishing Corp. (India), Delhi.

    Google Scholar 

  • Vishnu-Mittre. 1965. Floristic and ecological reconsiderations of the Pleistocene plant impressions from Kashmir. Palaeobotanist13: 308–327.

    Google Scholar 

  • —. 1966. Some aspects of pollen analytical investigations in the Kashmir valley. Palaeobotanist15: 157–175.

    Google Scholar 

  • —. 1972. The glacial succession in the Kashmir valley. A summary and discussion of recent research. Geol. Surv. India Misc. Publ.15: 89–96.

    Google Scholar 

  • —. 1974. Late Quaternary palaeobotany and palynology in India. Pages 16–51in Vishnu-Mittre (ed.), An appraisement in Late Quaternary vegetational development in extra-European areas. Birbal Sahni Institute of Palaeobotany, Lucknow.

    Google Scholar 

  • —. 1979. Palaeobotanical evidence of the environment of early Man in Northwestern and Western India. Grana18: 167–181.

    Article  Google Scholar 

  • —. 1984. Quaternary palaeobotany/palynology in the Himalaya: An overview. Palaeobotanist32: 158–187.

    Google Scholar 

  • —. 1984. Floristic changes in the Himalaya (southern slopes) and Siwaliks from the Mid-Tertiary to Recent times. Pages 483–503in R. O. Whyte (ed.), The evolution of the east Asian environment. Vol. II. Palaeobotany, palaeozoology and palaeoanthropology. Centre of Asian Studies, University of Hong Kong.

    Google Scholar 

  • —,C. Sharma, A. K. Saxena, K. Prasad, A. Bhattcharya &M. S. Chauhan. 1984. Pollen stratigraphy of India. Puratattua, Bull. Indian Archaeol. Soc.13/14: 115–122.

    Google Scholar 

  • Vogt, K. A., C. C. Grier, C. E. Meier &M. R. Keyes. 1983. Organic matter and nutrient dynamics in forest floors of young and matureAbies amabilis stands by fine root input. Ecol. Monogr.53: 139–157.

    Article  Google Scholar 

  • Wadia, D. N. 1936. Structure of the Himalaya and of the North Indian Fore Land. Pages 38–49in Proc. Indian Sci. Congr. Vol. 25, Pt. 2. Calcutta.

  • — 1937. Recent geological changes in northern India and their effect upon the drainage of the Indo-Gangetic basin. Sci. & Cult.2: 384–387.

    Google Scholar 

  • — 1963. Problems of Himalayan Geology. Sci. & Cult.29: 20–23.

    Google Scholar 

  • Whittaker, R. H. 1966. Forest dimensions and production in the Great Smoky Mountains. Ecology47: 103–121.

    Article  Google Scholar 

  • — 1970. The biochemical ecology of higher plants. Pages 43–70in E. Sondheimer & J. B. Simeone (eds.), Chemical ecology. Academic Press, New York.

    Google Scholar 

  • — 1973. Climax concepts and recognition. Handb. Veg. Sci.8: 137–154.

    Google Scholar 

  • — 1975. Community and ecosystems, 2nd ed. Macmillan, New York.

    Google Scholar 

  • —,G. E. Likens, F. H. Bormann, J. S. Eaton &T. G. Siccama. 1969. The Hubbard Brook ecosystem study: Forest nutrient cycling and element behavior. Ecology60(1): 203–220.

    Article  Google Scholar 

  • — &G. M. Woodwell. 1969. Structure, production and diversity of the oak-pine forest at Brookhaven, New York. J. Appl. Ecol.57: 155–174.

    Google Scholar 

  • Wiegert, R. G. 1970. Effects of ionizing radiation on leaf fall, decomposition, microarthropods of a montane rain forest. Pages H.89-H.100in H. T. Odum & R. F. Pigeon (eds.), A tropical rain forest—A study of irradiation and ecology at El Verde, Puerto Rico. USAEL, Oak Ridge, Tennessee.

    Google Scholar 

  • Wikum, D. A. &M. K. Wali. 1974. Analysis of a North Dakota gallery forest. Vegetation in relation to topographic and soil gradients. Ecol. Monogr.44: 441–464.

    Article  Google Scholar 

  • Witkamp, M. 1966. Decomposition of leaf litter in relation to environmental conditions, microflora and microbial respiration. Ecology47: 194–201.

    Article  Google Scholar 

  • — &J. S. Olson. 1963. Breakdown of confined and non-confined oak litter. Oikos14: 138–147.

    Article  Google Scholar 

  • Woodwell, G. M., R. H. Whittaker &R. A. Houghton. 1975. Nutrient concentration in plants in the Brookhaven oak-pine forest. Ecology56: 318–332.

    Article  CAS  Google Scholar 

  • Zangerl, A. R. &F. A. Bazzaz. 1983. Responses of an early and late successional species ofPolygonum to variations in resource availability. Oecologia (Berlin)56: 397–404.

    Article  Google Scholar 

  • Zutshi, D. P. &K. K. Vass. 1978. Limnological studies on Dal Lake—Chemical features. Indian J. Ecol.5: 90–97.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, J.S., Singh, S.P. Forest vegetation of the Himalaya. Bot. Rev 53, 80–192 (1987). https://doi.org/10.1007/BF02858183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858183

Keywords

Navigation