Skip to main content

Advertisement

Log in

Assessing land use changes’ effect on river water quality in the Dez Basin using land change modeler

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Changes in land use due to urbanization, industrialization, and agriculture will adversely affect water quality at all scales. This study examined the possible effects of future land use on the water quality of the Dez River located in Iran. The QUAL2Kw dynamic model was used to simulate the water quality of the Dez River. Data and information available in July 2019 and 2013 were used for calibration and validation. According to the comparison of the RMSE, RMSE%, and percent bias error indices for the model during the calibration and validation period, the QUAL2Kw model of Dez River had high accuracy with acceptable values of errors. The land use changes in the Dez river basin were modeled and predicted by the LCM model after simulating water quality. The images from Landsat 8/OLI were used for 2013, 2016, and 2019, respectively. Based on the accurate evaluation of classified images, Kappa coefficients for 2013, 2016, and 2019 were 88.19, 87.46, and 89.91, respectively. Modeling land use and land cover changes was conducted to predict 2030. As a result of the study, agricultural and built-up areas and water bodies will increase in 2030. The possible effects of land use changes in 2030 on river water quality were examined as a final step. Based on the results of the water quality simulation in 2030, biochemical oxygen demand, chemical oxygen demand, and NO3 parameters exceeded the maximum permissible level of drinking standard. This study recommends frequent water quality monitoring and LULC planning and management to reduce pollution in river basins.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abdovis Sabdovis, S., Sedghi, H., Hassonizadeh, H., & Babazadeh, H. (2020). The quality study and simulation by Qual2k model in Dez River, Iran. Irrigation Sciences and Engineering, 43(3), 71–85. https://doi.org/10.22055/jise.2018.25434.1752

    Article  Google Scholar 

  • Al-sharif, A. A. A., & Pradhan, B. (2014). Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arabian Journal of Geosciences, 7(10), 4291–4301. https://doi.org/10.1007/s12517-013-1119-7

    Article  Google Scholar 

  • Araya, Y. H., & Cabral, P. (2010). Analysis and modeling of urban land cover change in Setúbal and Sesimbra, Portugal. Remote Sensing, 2(6), 1549–1563. https://doi.org/10.3390/rs2061549

    Article  Google Scholar 

  • Ayele, G., Hayicho, H., & Alemu, M. (2019). Land use land cover change detection and deforestation modeling. In Delomena District of Bale Zone, Ethiopia. Journal of Environmental Protection, 10, 532–561. https://doi.org/10.4236/jep.2019.104031

    Article  Google Scholar 

  • Azari, M., Tayyebi, A., Helbich, M., & Reveshty, M. A. (2016). Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: Application to Maragheh, Iran. Giscience & Remote Sensing, 53(2), 183–205. https://doi.org/10.1080/15481603.2015.1137111

    Article  Google Scholar 

  • Baker, A. (2003). Land use and water quality. Hydrological Processes, 17(12), 2499–2501. https://doi.org/10.1002/hyp.5140

    Article  Google Scholar 

  • Bowie, G. L., Laboratory, E. R., & Tech, T. (1985). Rates, constants, and kinetics formulations in surface water quality modeling. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency. Retrieved March 3, 2021, from https://books.google.com/books?id=RpuGnQEACAAJ

  • Bu, H., Zhang, Y., Meng, W., & Song, X. (2016). Effects of land-use patterns on in-stream nitrogen in a highly-polluted river basin in Northeast China. Science of the Total Environment, 553, 232–242. https://doi.org/10.1016/j.scitotenv.2016.02.104

    Article  CAS  Google Scholar 

  • Buck, O., Niyogi, D. K., & Townsend, C. R. (2004). Scale-dependence of land use effects on water quality of streams in agricultural catchments. Environmental Pollution, 130(2), 287–299. https://doi.org/10.1016/j.envpol.2003.10.018

    Article  CAS  Google Scholar 

  • Camara, M., Jamil, N. R., & Abdullah, A. F. B. (2019). Impact of land uses on water quality in Malaysia: a review. Ecological Processes, 8(1), 10. https://doi.org/10.1186/s13717-019-0164-x

    Article  Google Scholar 

  • Chapra, S. C., Pelletier, G. J., & Tao, H. (2008). QUAL2K: A modeling framework for simulating river and stream water quality, Version 2.11. USA: Documentation and User’s Manual. Civil and Environmental Engineering Department, Tufts University, Medford.

  • Charbonneau, P., & Knapp, B. (1995). A user’s guide to PIKAIA 1.0 (No. NCAR/TN-418+IA). University Corporation for Atmospheric Research. https://doi.org/10.5065/D69P2ZKK

  • Clark Labs. (2015). TerrSet geospatial monitoring and modeling software. In: Clark Labs, Clark University Worcester, MA.

  • Dey, N. N., Al Rakib, A., Kafy, A. A., & Raikwar, V. (2021). Geospatial modelling of changes in land use/land cover dynamics using Multi-layer Perceptron Markov chain model in Rajshahi City, Bangladesh. Environmental Challenges, 4, 100148. https://doi.org/10.1016/j.envc.2021.100148

  • Eastman, R. (2012). IDRISI for windows: IDRISI Selva Manual. Clark University, New York.

  • Fathizad, H., Rostami, N., & Faramarzi, M. (2015). Detection and prediction of land cover changes using Markov chain model in semi-arid rangeland in western Iran. Environmental Monitoring and Assessment, 187(10), 629. https://doi.org/10.1007/s10661-015-4805-y

    Article  Google Scholar 

  • Gashaw, T., Bantider, A., & Mahari, A. (2014). Evaluations of land use/land cover changes and land degradation in Dera District, Ethiopia: GIS and remote sensing based analysis. International Journal of Scientific Research in Environmental Sciences, 2, 199–208. https://doi.org/10.12983/ijsres-2014-p0199-0208

    Article  Google Scholar 

  • Gashaw, T., Tulu, T., & Argaw, M. (2017). Erosion risk assessment for prioritization of conservation measures in Geleda watershed, Blue Nile basin, Ethiopia. Environmental Systems Research, 6(1), 1. https://doi.org/10.1186/s40068-016-0078-x

    Article  Google Scholar 

  • Gharaibeh, A., Shaamala, A., Obeidat, R., & Al-Kofahi, S. (2020). Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model. Heliyon, 6(9). https://doi.org/10.1016/j.heliyon.2020.e05092

  • Girma, R., Fürst, C., & Moges, A. (2022). Land use land cover change modeling by integrating artificial neural network with cellular Automata-Markov chain model in Gidabo river basin, main Ethiopian rift. Environmental Challenges, 6, 100419. https://doi.org/10.1016/j.envc.2021.100419

  • Goodarzi, M. R., Niknam, A. R. R., Jamali, V., & Pourghasemi, H. R. (2022). Aquifer vulnerability identification using DRASTIC-LU model modification by fuzzy analytic hierarchy process. Modeling Earth Systems and Environment, 8(4), 5365–5380. https://doi.org/10.1007/s40808-022-01408-4

    Article  Google Scholar 

  • Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., & Hokao, K. (2011). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling, 222(20), 3761–3772. https://doi.org/10.1016/j.ecolmodel.2011.09.009

    Article  Google Scholar 

  • Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101–112. https://doi.org/10.1016/j.apgeog.2015.06.015

    Article  Google Scholar 

  • Hamad, R., Balzter, H., & Kolo, K. (2018). Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability, 10(10), 3421. https://doi.org/10.3390/su10103421

    Article  Google Scholar 

  • Hepinstall, J. A., Alberti, M., & Marzluff, J. M. (2008). Predicting land cover change and avian community responses in rapidly urbanizing environments. Landscape Ecology, 23(10), 1257–1276. https://doi.org/10.1007/s10980-008-9296-6

    Article  Google Scholar 

  • Huang, J., Zhan, J., Yan, H., Wu, F., & Deng, X. (2013). Evaluation of the impacts of land use on water quality: A case study in The Chaohu Lake Basin. The Scientific World Journal, 2013, 329187. https://doi.org/10.1155/2013/329187

  • Kafy, A.-A., Naim, M. N. H., Subramanyam, G., Faisal, A.-A., Ahmed, N. U., Rakib, A. A., Kona, M. A., & Sattar, G. S. (2021). Cellular automata approach in dynamic modelling of land cover changes using RapidEye images in Dhaka, Bangladesh. Environmental Challenges, 4, 100084. https://doi.org/10.1016/j.envc.2021.100084

  • Kafy, A. A., Rahman, M. S., Faisal, A.-A., Hasan, M. M., & Islam, M. (2020). Modelling future land use land cover changes and their impacts on land surface temperatures in Rajshahi, Bangladesh. Remote Sensing Applications: Society and Environment, 18, 100314. https://doi.org/10.1016/j.rsase.2020.100314

  • Kalburgi, P., Shareefa, R., & Deshannavar, U. (2015). Development and evaluation of BOD–DO model for River Ghataprabha near Mudhol (India), using QUAL2K. International Journal of Engineering and Manufacturing, 5, 15–25. https://doi.org/10.5815/ijem.2015.01.02

    Article  Google Scholar 

  • Kannel, P. R., Lee, S., Kanel, S. R., Lee, Y.-S., & Ahn, K.-H. (2007). Application of QUAL2Kw for water quality modeling and dissolved oxygen control in the river Bagmati. Environmental Monitoring and Assessment, 125(1), 201–217. https://doi.org/10.1007/s10661-006-9255-0

    Article  CAS  Google Scholar 

  • Khuzestan Water and Power Authority (KWPA). (2000). An assessment of pollutants in Karun River. A report prepared by the Water Quality Assessment section, Khuzestan Water and Power Authority, Khuzestan, Iran.

  • Leta, M. K., Demissie, T. A., & Tränckner, J. (2021). Modeling and prediction of land use land cover change dynamics based on land change modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability, 13(7), 3740. https://www.mdpi.com/2071-1050/13/7/3740

  • Li, S., Gu, S., Liu, W., Han, H., & Zhang, Q. (2008). Water quality in relation to land use and land cover in the upper Han River Basin, China. CATENA, 75(2), 216–222. https://doi.org/10.1016/j.catena.2008.06.005

    Article  CAS  Google Scholar 

  • Li, Y. L., Liu, K., Li, L., & Xu, Z. X. (2012). Relationship of land use/cover on water quality in the Liao River basin, China. Procedia Environmental Sciences, 13, 1484–1493. https://doi.org/10.1016/j.proenv.2012.01.140

    Article  CAS  Google Scholar 

  • Morales-Barquero, L., Lyons, M. B., Phinn, S. R., & Roelfsema, C. M. (2019). Trends in remote sensing accuracy assessment approaches in the context of natural resources. Remote Sensing, 11, 1–16.

    Article  Google Scholar 

  • Mas, J.-F., Kolb, M., Paegelow, M., Camacho Olmedo, M. T., & Houet, T. (2014). Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software, 51, 94–111. https://doi.org/10.1016/j.envsoft.2013.09.010

    Article  Google Scholar 

  • Mishra, V. N., & Rai, P. K. (2016). A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Arabian Journal of Geosciences, 9(4), 249. https://doi.org/10.1007/s12517-015-2138-3

    Article  Google Scholar 

  • Mishra, V. N., Rai, P. K., Prasad, R., Punia, M., & Nistor, M.-M. (2018). Prediction of spatio-temporal land use/land cover dynamics in rapidly developing Varanasi district of Uttar Pradesh, India, using geospatial approach: A comparison of hybrid models. Applied Geomatics, 10(3), 257–276. https://doi.org/10.1007/s12518-018-0223-5

    Article  Google Scholar 

  • Mohammady, S., Delavar, M. R., & Pahlavani, P. (2014). Urban growth modeling using an artificial neural network a case study of Sanandaj City, Iran. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W3, 203-208. https://doi.org/10.5194/isprsarchives-XL-2-W3-203-2014

  • Mosammam, H. M., Nia, J. T., Khani, H., Teymouri, A., & Kazemi, M. (2017). Monitoring land use change and measuring urban sprawl based on its spatial forms: The case of Qom city. The Egyptian Journal of Remote Sensing and Space Science, 20(1), 103–116. https://doi.org/10.1016/j.ejrs.2016.08.002

    Article  Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153

    Article  Google Scholar 

  • Nagaraju, A., Sunil Kumar, K., & Thejaswi, A. (2014). Assessment of groundwater quality for irrigation: A case study from Bandalamottu lead mining area, Guntur District, Andhra Pradesh, South India. Applied Water Science, 4(4), 385–396. https://doi.org/10.1007/s13201-014-0154-1

    Article  CAS  Google Scholar 

  • Ngoye, E., & Machiwa, J. F. (2004). The influence of land-use patterns in the Ruvu river watershed on water quality in the river system. Physics and Chemistry of the Earth, 29, 1161–1166.

    Article  Google Scholar 

  • Ni, X., Parajuli, P. B., Ouyang, Y., Dash, P., & Siegert, C. (2021). Assessing land use change impact on stream discharge and stream water quality in an agricultural watershed. CATENA, 198, 105055. https://doi.org/10.1016/j.catena.2020.105055

  • Nikakhtar, M., Rahmati, S. H., & Bavani, A. R. M. (2019). Impact of climate change on the future quality of surface waters: Case study of the Ardak River, northeast of Iran. Journal of Water and Climate Change, 11(3), 685–702. https://doi.org/10.2166/wcc.2019.132

    Article  Google Scholar 

  • Nouri, J., Gharagozlou, A., Arjmandi, R., Faryadi, S., & Adl, M. (2014). Predicting urban land use changes using a CA–Markov model. Arabian Journal for Science and Engineering, 39(7), 5565–5573. https://doi.org/10.1007/s13369-014-1119-2

    Article  Google Scholar 

  • Olusola, A., David, O., & Durowoju, O. (2018). Analysis of Organic Matter and Carbonate Mineral Distribution in Shallow Water Surface Sediments, 1, 106–110.

    Google Scholar 

  • Pelletier, G. J., Chapra, S. C., & Tao, H. (2006). QUAL2Kw — A framework for modeling water quality in streams and rivers using a genetic algorithm for calibration. Environmental Modelling & Software, 21(3), 419–425. https://doi.org/10.1016/j.envsoft.2005.07.002

    Article  Google Scholar 

  • Rafiee, M., Akhond Ali, A. M., Moazed, H., Lyon, S. W., Jaafarzadeh, N., & Zahraie, B. (2014). A case study of water quality modeling of the Gargar River, Iran. Journal of Hydraulic Structures, 1(2), 10–22. https://doi.org/10.22055/jhs.2014.10533

    Article  Google Scholar 

  • Rawat, J. S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 77–84. https://doi.org/10.1016/j.ejrs.2015.02.002

    Article  Google Scholar 

  • Regasa, M. S., Nones, M., & Adeba, D. (2021). A review on land use and land cover change in Ethiopian basins. Land, 10(6), 585. https://doi.org/10.3390/land10060585

    Article  Google Scholar 

  • Rimal, B., Zhang, L., Keshtkar, H., Haack, B. N., Rijal, S., & Zhang, P. (2018). Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and Markov chain. ISPRS International Journal of Geo-Information, 7(4), 154. https://www.mdpi.com/2220-9964/7/4/154

  • Rodrigues, V., Estrany, J., Ranzini, M., de Cicco, V., Martín-Benito, J. M. T., Hedo, J., & Lucas-Borja, M. E. (2018). Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Córrego Água Limpa, São Paulo (Brazil). Science of the Total Environment, 622–623, 1553–1561. https://doi.org/10.1016/j.scitotenv.2017.10.028

    Article  CAS  Google Scholar 

  • Samal, D. R., & Gedam, S. S. (2015). Monitoring land use changes associated with urbanization: An object based image analysis approach. European Journal of Remote Sensing, 48(1), 85–99. https://doi.org/10.5721/EuJRS20154806

    Article  Google Scholar 

  • Sang, L., Zhang, C., Yang, J., Zhu, D., & Yun, W. (2011). Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Mathematical and Computer Modelling, 54(3), 938–943. https://doi.org/10.1016/j.mcm.2010.11.019

    Article  Google Scholar 

  • Shafizadeh-Moghadam, H., Tayyebi, A., & Helbich, M. (2017). Transition index maps for urban growth simulation: Application of artificial neural networks, weight of evidence and fuzzy multi-criteria evaluation. Environmental Monitoring and Assessment, 189(6), 300. https://doi.org/10.1007/s10661-017-5986-3

    Article  Google Scholar 

  • Sharifi, A. (2018). Estimation of biophysical parameters in wheat crops in Golestan province using ultra-high resolution images. Remote Sensing Letters, 9(6), 559–568. https://doi.org/10.1080/2150704X.2018.1452058

    Article  Google Scholar 

  • Sharifi, A., Amini, J., & Tateishi, R. (2016). Estimation of forest biomass using multivariate relevance vector regression. Photogrammetric Engineering & Remote Sensing, 82(1), 41–49. https://doi.org/10.14358/PERS.83.1.41

    Article  Google Scholar 

  • Sharifi, A., & Hosseingholizadeh, M. (2019). The effect of rapid population growth on urban expansion and destruction of green space in Tehran from 1972 to 2017. Journal of the Indian Society of Remote Sensing, 47(6), 1063–1071. https://doi.org/10.1007/s12524-019-00966-y

    Article  Google Scholar 

  • Singh, S. K., Mustak, S., Srivastava, P. K., Szabó, S., & Islam, T. (2015). Predicting spatial and decadal LULC changes through cellular automata Markov chain models using Earth observation datasets and geo-information. Environmental Processes, 2(1), 61–78. https://doi.org/10.1007/s40710-015-0062-x

    Article  Google Scholar 

  • Subedi, P., Subedi, K., & Thapa, B. (2013). Application of a hybrid cellular automaton ¨C Markov (CA-Markov) model in land-use change prediction: A case study of Saddle Creek Drainage Basin. Florida. Applied Ecology and Environmental Sciences, 1(6), 126–132. http://pubs.sciepub.com/aees/1/6/5

  • Tahiru, A. A., Doke, D. A., & Baatuuwie, B. N. (2020). Effect of land use and land cover changes on water quality in the Nawuni Catchment of the White Volta Basin, Northern Region, Ghana. Applied Water Science, 10(8), 198. https://doi.org/10.1007/s13201-020-01272-6

    Article  CAS  Google Scholar 

  • Tayyebi, A., & Pijanowski, B. C. (2014). Modeling multiple land use changes using ANN, CART and MARS: Comparing tradeoffs in goodness of fit and explanatory power of data mining tools. International Journal of Applied Earth Observation and Geoinformation, 28, 102–116. https://doi.org/10.1016/j.jag.2013.11.008

    Article  Google Scholar 

  • Tong, S. T. Y., & Chen, W. (2002). Modeling the relationship between land use and surface water quality. Journal of Environmental Management, 66(4), 377–393. https://doi.org/10.1006/jema.2002.0593

    Article  Google Scholar 

  • USEPA. (2003). Human health toxicity values in superfund risk assessments. OSWER Directive, 9285.753.

  • Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: The kappa statistic. Family Medicine, 37, 360–363.

    Google Scholar 

  • Wang, S. W., Munkhnasan, L., & Lee, W.-K. (2021). Land use and land cover change detection and prediction in Bhutan’s high altitude city of Thimphu, using cellular automata and Markov chain. Environmental Challenges, 2, 100017. https://doi.org/10.1016/j.envc.2020.100017

  • Wang, W., Zhang, C., Allen, J. M., Li, W., Boyer, M. A., Segerson, K., & Silander, J. A. (2016). Analysis and prediction of land use changes related to invasive species and major driving forces in the state of Connecticut. Land, 5(3), 25. https://doi.org/10.3390/land5030025

    Article  Google Scholar 

  • Wnęk, A., Kudas, D., & Stych, P. (2021). National level land-use changes in functional urban areas in Poland, Slovakia, and Czechia. Land, 10(1), 39. https://doi.org/10.3390/land10010039

    Article  Google Scholar 

  • Yirsaw, E., Wu, W., Shi, X., Temesgen, H., & Bekele, B. (2017). Land use/land cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of China, the Su-Xi-Chang Region. Sustainability, 9(7), 1204. https://doi.org/10.3390/su9071204

    Article  Google Scholar 

  • Zadbagher, E., Becek, K., & Berberoglu, S. (2018). Modeling land use/land cover change using remote sensing and geographic information systems: Case study of the Seyhan Basin, Turkey. Environmental Monitoring and Assessment, 190(8), 494. https://doi.org/10.1007/s10661-018-6877-y

    Article  Google Scholar 

  • Zhao, J., Lin, L., Yang, K., Liu, Q., & Qian, G. (2015). Influences of land use on water quality in a reticular river network area: A case study in Shanghai, China. Landscape and Urban Planning, 137, 20–29. https://doi.org/10.1016/j.landurbplan.2014.12.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation and data collection were performed by Mohammad Reza Goodarzi, Amir Reza R. Niknam, and S.Hoda Rahmati. Also, analysis and modeling were performed by all authors. The first draft of the manuscript was written by Amir Reza R. Niknam and Nasrin Fathollahzadeh Attar, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Reza Goodarzi.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodarzi, M.R., Niknam, A.R.R., Rahmati, S.H. et al. Assessing land use changes’ effect on river water quality in the Dez Basin using land change modeler. Environ Monit Assess 195, 774 (2023). https://doi.org/10.1007/s10661-023-11265-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11265-y

Keywords

Navigation