Skip to main content
Log in

Development of QuEChERS coupled with UHPLC–MS/MS for simultaneous determination of eight neonicotinoid pesticides in breast milk

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A speedy and hypersensitive method was built to detect eight neonicotinoid insecticides (neonics) in breast milk by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC–MS/MS). The breast milk was extracted with a mixture of acetonitrile and water and purified with primary secondary amine (PSA) and C18. The recovery of the method ranged from 74.3 to 105.9% with relative standard deviations (RSDs) of less than 10%, and the limit of detection ranged from 0.05 to 0.18 ng/mL. Among 32 samples obtained from women 1 month postpartum, thiamethoxam and imidacloprid were the most frequently detected neonics. Moreover, thiacloprid and imidaclothiz were not detected in any samples. The concentrations of neonics in breast milk ranged from 1.90 to 149.95 ng/mL. Considering the toxic effects on mammals and even humans, infants who are exposed to neonics through ingestion of breast milk should receive extensive attention in future studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in supplementary information files this of article.

References

  • Adelantado, C., Ríos, Á., & Zougagh, M. (2018). Magnetic nanocellulose hybrid nanoparticles and ionic liquid for extraction of neonicotinoid insecticides from milk samples prior to determination by liquid chromatography-mass spectrometry. Food Additives & Contaminants: Part A, 35, 1755–1766. https://doi.org/10.1080/19440049.2018.1492156

    Article  CAS  Google Scholar 

  • Aguilera-Luiz, M. M., Plaza-Bolaños, P., Romero-González, R., Martínez Vidal, J. L., & Frenich, A. G. (2011). Comparison of the efficiency of different extraction methods for the simultaneous determination of mycotoxins and pesticides in milk samples by ultra high-performance liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 399, 2863–2875. https://doi.org/10.1007/s00216-011-4670-7

    Article  CAS  Google Scholar 

  • Anand, N., Kundu, A., & Ray, S. (2018). A Validated method for the determination of neonicotinoid, pyrethroid and organochlorine residues in human milk. Chromatographia, 81, 315–325. https://doi.org/10.1007/s10337-017-3436-6

    Article  CAS  Google Scholar 

  • Anastassiades, M., Lehotay, S. J., Štajnbaher, D., & Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International, 86, 412–431. https://doi.org/10.1093/jaoac/86.2.412

    Article  CAS  Google Scholar 

  • Bonmatin, J. -M., Noome, D. A., Moreno, H., Mitchell, E. A. D., Glauser, G., Soumana, O. S., Bijleveld van Lexmond, M., & Sánchez-Bayo, F. (2019). A survey and risk assessment of neonicotinoids in water, soil and sediments of Belize. Environmental Pollution, 249, 949–958. https://doi.org/10.1016/j.envpol.2019.03.099

    Article  CAS  Google Scholar 

  • Chen, D., Liu, Z., Barrett, H., Han, J., Lv, B., Li, Y., Li, J., Zhao, Y., & Wu, Y. (2020). Nationwide biomonitoring of neonicotinoid insecticides in breast milk and health risk assessment to nursing infants in the Chinese population. Journal of Agriculture and Food Chemistry, 68, 13906–13915. https://doi.org/10.1021/acs.jafc.0c05769

    Article  CAS  Google Scholar 

  • Chen, M., Tao, L., McLean, J., & Lu, C. (2014). Quantitative analysis of neonicotinoid insecticide residues in foods: Implication for dietary exposures. Journal of Agriculture and Food Chemistry, 62, 6082–6090. https://doi.org/10.1021/jf501397m

    Article  CAS  Google Scholar 

  • Dankyi, E., Gordon, C., Carboo, D., & Fomsgaard, I. S. (2014). Quantification of neonicotinoid insecticide residues in soils from cocoa plantations using a QuEChERS extraction procedure and LC-MS/MS. Science of the Total Environment, 499, 276–283. https://doi.org/10.1016/j.scitotenv.2014.08.051

    Article  CAS  Google Scholar 

  • Fedrizzi, G., Altafini, A., Armorini, S., Al-Qudah, K. M., & Roncada, P. (2019). LC–MS/MS analysis of five neonicotinoid pesticides in sheep and cow milk samples collected in Jordan valley. Bulletin of Environment Contamination and Toxicology, 102, 347–352. https://doi.org/10.1007/s00128-019-02555-8

    Article  CAS  Google Scholar 

  • Gibbons, D., Morrissey, C., & Mineau, P. (2015). A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environmental Science and Pollution Research, 22, 103–118. https://doi.org/10.1007/s11356-014-3180-5

    Article  CAS  Google Scholar 

  • Hallmann, C. A., Foppen, R. P. B., van Turnhout, C. A. M., de Kroon, H., & Jongejans, E. (2014). Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature, 511, 341–343. https://doi.org/10.1038/nature13531

    Article  CAS  Google Scholar 

  • Han, W., Tian, Y., & Shen, X. (2018). Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. Chemosphere, 192, 59–65. https://doi.org/10.1016/j.chemosphere.2017.10.149

    Article  CAS  Google Scholar 

  • Huang, Y.-F., Huang, Y. -M., & Lee, H. -J. (2020). Simultaneous analysis of seven neonicotinoids in commercial milk samples using an UHPLC-MS/MS method. Applied Sciences, 10, 6775. https://doi.org/10.3390/app10196775

    Article  CAS  Google Scholar 

  • Humann-Guilleminot, S., Clément, S., Desprat, J., Binkowski, ŁJ., Glauser, G., & Helfenstein, F. (2019). A large-scale survey of house sparrows feathers reveals ubiquitous presence of neonicotinoids in farmlands. Science of the Total Environment, 660, 1091–1097. https://doi.org/10.1016/j.scitotenv.2019.01.068

    Article  CAS  Google Scholar 

  • Jeschke, P., & Nauen, R. (2008). Neonicotinoids—from zero to hero in insecticide chemistry. Pest Management Science, 64, 1084–1098. https://doi.org/10.1002/ps.1631

    Article  CAS  Google Scholar 

  • Jeschke, P., Nauen, R., Schindler, M., & Elbert, A. (2011). Overview of the status and global strategy for neonicotinoids. Journal of Agriculture and Food Chemistry, 59, 2897–2908. https://doi.org/10.1021/jf101303g

    Article  CAS  Google Scholar 

  • Kamel, A., Qian, Y., Kolbe, E., & Stafford, C. (2010). Development and validation of a multiresidue method for the determination of neonicotinoid and macrocyclic lactone pesticide residues in milk, fruits, and vegetables by ultra-performance liquid chromatography/MS/MS. Journal of AOAC International, 93, 389–399.

    Article  CAS  Google Scholar 

  • Lachat, L., & Glauser, G. (2018). Development and validation of an ultra-sensitive UHPLC–MS/MS method for neonicotinoid analysis in milk. Journal of Agriculture and Food Chemistry, 66, 8639–8646. https://doi.org/10.1021/acs.jafc.8b03005

    Article  CAS  Google Scholar 

  • Liu, S., Zheng, Z., Wei, F., Ren, Y., Gui, W., Wu, H., & Zhu, G. (2010). Simultaneous determination of seven neonicotinoid pesticide residues in food by ultraperformance liquid chromatography tandem mass spectrometry. Journal of Agriculture and Food Chemistry, 58, 3271–3278. https://doi.org/10.1021/jf904045j

    Article  CAS  Google Scholar 

  • Lu, C., Chang, C.-H., Palmer, C., Zhao, M., & Zhang, Q. (2018). Neonicotinoid residues in fruits and vegetables: An integrated dietary exposure assessment approach. Environmental Science and Technology, 52, 3175–3184. https://doi.org/10.1021/acs.est.7b05596

    Article  CAS  Google Scholar 

  • Lu, C., Lu, Z., Lin, S., Dai, W., & Zhang, Q. (2020). Neonicotinoid insecticides in the drinking water system – Fate, transportation, and their contributions to the overall dietary risks. Environmental Pollution, 258, 113722. https://doi.org/10.1016/j.envpol.2019.113722

  • Luzardo, O. P., Ruiz-Suárez, N., Almeida-González, M., Henríquez-Hernández, L. A., Zumbado, M., & Boada, L. D. (2013). Multi-residue method for the determination of 57 persistent organic pollutants in human milk and colostrum using a QuEChERS-based extraction procedure. Analytical and Bioanalytical Chemistry, 405, 9523–9536. https://doi.org/10.1007/s00216-013-7377-0

    Article  CAS  Google Scholar 

  • MARA. (2019). National Food Safety Standard—Maximum residue limits for pesticides in food. (GB 2763–2019). The industry standard of PR China.

  • Morrissey, C. A., Mineau, P., Devries, J. H., Sanchez-Bayo, F., Liess, M., Cavallaro, M. C., & Liber, K. (2015). Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environment International, 74, 291–303. https://doi.org/10.1016/j.envint.2014.10.024

    Article  CAS  Google Scholar 

  • Osaka, A., Ueyama, J., Kondo, T., Nomura, H., Sugiura, Y., Saito, I., Nakane, K., Takaishi, A., Ogi, H., Wakusawa, S., Ito, Y., & Kamijima, M. (2016). Exposure characterization of three major insecticide lines in urine of young children in Japan—Neonicotinoids, organophosphates, and pyrethroids. Environmental Research, 147, 89–96. https://doi.org/10.1016/j.envres.2016.01.028

    Article  CAS  Google Scholar 

  • Seccia, S., Fidente, P., Montesano, D., & Morrica, P. (2008). Determination of neonicotinoid insecticides residues in bovine milk samples by solid-phase extraction clean-up and liquid chromatography with diode-array detection. Journal of Chromatography A, 1214, 115–120. https://doi.org/10.1016/j.chroma.2008.10.088

    Article  CAS  Google Scholar 

  • Taliansky-Chamudis, A., Gómez-Ramírez, P., León-Ortega, M., & García-Fernández, A. J. (2017). Validation of a QuECheRS method for analysis of neonicotinoids in small volumes of blood and assessment of exposure in Eurasian eagle owl (Bubo bubo) nestlings. Science of the Total Environment, 595, 93–100. https://doi.org/10.1016/j.scitotenv.2017.03.246

    Article  CAS  Google Scholar 

  • Tang, T., Cui, W., Wei, D., Shuqing, Y., Zhengbiao, L., & Quan, Z. (2019). An integrated assessment and spatial-temporal variation analysis of neonicotinoids in pollen and honey from noncrop plants in Zhejiang, China. Environmental Pollution, 250, 397–406. https://doi.org/10.1016/j.envpol.2019.04.004

    Article  CAS  Google Scholar 

  • Wang, L., Liu, T., Liu, F., Zhang, J., Wu, Y., & Sun, H. (2015). Occurrence and profile characteristics of the pesticide imidacloprid, preservative parabens, and their metabolites in human urine from rural and urban China. Environmental Science and Technology, 49, 14633–14640. https://doi.org/10.1021/acs.est.5b04037

    Article  CAS  Google Scholar 

  • Zhang, F., Li, Y., Yu, C., & Pan, C. (2012). Determination of six neonicotinoid insecticides residues in spinach, cucumber, apple and pomelo by QuEChERS method and LC–MS/MS. Bulletin of Environment Contamination and Toxicology, 88, 885–890. https://doi.org/10.1007/s00128-012-0579-x

    Article  CAS  Google Scholar 

  • Zhang, Q., Li, Z., Chang, C. H., Lou, J. L., Zhao, M. R., & Lu, C. (2018a). Potential human exposures to neonicotinoid insecticides: A review. Environmental Pollution, 236, 71–81. https://doi.org/10.1016/j.envpol.2017.12.101

    Article  CAS  Google Scholar 

  • Zhang, Q., Lu, Z., Chang, C. -H., Yu, C., Wang, X., & Lu, C. (2019a). Dietary risk of neonicotinoid insecticides through fruit and vegetable consumption in school-age children. Environment International, 126, 672–681. https://doi.org/10.1016/j.envint.2019.02.051

    Article  CAS  Google Scholar 

  • Zhang, Q., Wang, X., Li, Z., Jin, H., Lu, Z., Yu, C., Huang, Y., & Zhao, M. (2018b). Simultaneous determination of nine neonicotinoids in human urine using isotope-dilution ultra-performance liquid chromatography–tandem mass spectrometry. Environmental Pollution, 240, 647–652. https://doi.org/10.1016/j.envpol.2018.04.144

    Article  CAS  Google Scholar 

  • Zhang, T., Song, S., Bai, X., He, Y., Zhang, B., Gui, M., Kannan, K., Lu, S., Huang, Y., & Sun, H. (2019b). A nationwide survey of urinary concentrations of neonicotinoid insecticides in China. Environment International, 132, 105114. https://doi.org/10.1016/j.envint.2019.105114

  • Zhang, Y., Zhang, Q., Li, S., Zhao, Y., Chen, D., & Wu, Y. (2020). Simultaneous determination of neonicotinoids and fipronils in tea using a modified QuEChERS method and liquid chromatography-high resolution mass spectrometry. Food Chemistry, 329, 127159. https://doi.org/10.1016/j.foodchem.2020.127159

  • Zhou, Y., Lu, X., Fu, X., Yu, B., Wang, D., Zhao, C., Zhang, Q., Tan, Y., & Wang, X. (2018). Development of a fast and sensitive method for measuring multiple neonicotinoid insecticide residues in soil and the application in parks and residential areas. Analytica Chimica Acta, 1016, 19–28. https://doi.org/10.1016/j.aca.2018.02.047

    Article  CAS  Google Scholar 

Download references

Funding

 This study was supported by the Zhejiang Provincial Natural Science Foundation of China (LR21B070001) and Zhejiang Provincial University Student Science and Technology Innovation Activity Plan (2021R403061).

Author information

Authors and Affiliations

Authors

Contributions

Zeteng Ying: investigation, data curation, writing-original draft. Lili Fu: investigation, data curation. Sijia Gu: investigation, data curation. Yan Wang: data curation. Xunjie Mo: investigation. Tao Tang: conceptualization, writing-review and editing. Hangbiao Jin: material preparation, writing-review and editing. Quan Zhang: conceptualization, methodology, writing-review and editing, supervision. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Quan Zhang.

Ethics declarations

Ethics approval and consent to participate

This research approach was approved by the ethics committees of the Zhejiang Academy of Medical Sciences.

Consent for publication

The manuscript does not contain any individual person data.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, Z., Fu, L., Gu, S. et al. Development of QuEChERS coupled with UHPLC–MS/MS for simultaneous determination of eight neonicotinoid pesticides in breast milk. Environ Monit Assess 195, 597 (2023). https://doi.org/10.1007/s10661-023-11185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11185-x

Keywords

Navigation