Skip to main content
Log in

Morphological parameters of hepatocytes in the European mole (Talpa europaea) and herb field mouse (Sylvaemus uralensis) under industrial pollution: Qualitative and quantitative assessment

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Morphological alterations of cells and tissues usually occur in biological organisms exposed to environmental contaminants, there by acting as a biomarker of environmental pollution, thus, making this study highly pertinent. The effect of industrial pollution on the qualitative and quantitative morphological parameters of hepatocytes (through histological analysis and cytomorphometry) was studied in two contrasting species of small mammals (Talpa europaea and Sylvaemus uralensis), taking into account the animal age (young and adult groups) and liver concentrations of heavy metals (Cu, Zn, Cd, Pb). Studies were performed in the regions exposed to emissions from two currently operating copper smelters: Middle Ural Copper Smelter (Middle Urals, T. europaea catching area) and Karabash Copper Smelter (Southern Urals, S. uralensis catching area). Seven morphometric parameters of hepatocytes were measured, of which two key parameters were selected by the method of principal components—the cell packing density and nuclear-cytoplasmic ratio (N/C). It was found that cell packing density in T. europaea from the impact zone decreased relative to the background area in young animals. At the same time, the differences in this parameter between the age groups from the background zone were leveled in the impact area of catching. The N/C ratio in T. europaea hepatocytes showed no correlation with either animal age or site of capture (background or impact area). In S. uralensis, both parameters, even taking into account the age, were found to be insensitive to indicate an effect of industrial pollution. Dystrophic changes (tested through histological analysis) in the liver tissue were revealed in all animal groups, but their frequency did not depend on any of the factors (age, zone) as well as the level of accumulation of toxic heavy metals (Cd, Pb). Morphometric parameters of hepatocytes have proved to be more reliable indicators of pollution, compared to the frequency of liver histopathology, due to lower subjectivity in their evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors declare that (the/all other) data supporting the findings of this study are available within the article (and its supplementary information files).

References

  • Amuno, S., Niyogi, S., Amuno, M., & Attitaq, J. (2016). Heavy metal bioaccumulation and histopathological alterations in wild Arctic hares (Lepus arcticus) inhabiting a former lead-zinc mine in the Canadian high arctic: A preliminary study. Science of the Total Environment, 556, 252–263. https://doi.org/10.1016/j.scitotenv.2016.03.007

    Article  CAS  Google Scholar 

  • Andjelkovic, M., Buha Djordjevic, A., Antonijevic, E., Antonijevic, B., Stanic, M., Kotur-Stevuljevic, J., Spasojevic-Kalimanovska, V., Jovanovic, M., Boricic, N., Wallace, D., & Bulat, Z. (2019). Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. International Journal of Environmental Research and Public Health, 16(2), 274. https://doi.org/10.3390/ijerph16020274

    Article  CAS  Google Scholar 

  • ATSDR Substance Priority List. (Last Reviewed: November 16, 2022). Retrieved October 20, 2022, from https://www.atsdr.cdc.gov

  • Au, D. W. T. (2004). The application of histo-cytopathological biomarkers in marine pollution monitoring: A review. Marine Pollution Bulletin, 48(9–10), 817–834. https://doi.org/10.1016/j.marpolbul.2004.02.032

    Article  CAS  Google Scholar 

  • Ballová, Z. K., Korec, F., & Pinterová, K. (2020). Relationship between heavy metal accumulation and histological alterations in voles from alpine and forest habitats of the West Carpathians. Environmental Science and Pollution Research, 27, 36411–36426. https://doi.org/10.1007/s11356-020-09654-8

    Article  CAS  Google Scholar 

  • Bartlow, A. W. (2019). Histological findings in wild rodents of the Great Basin. Western North American Naturalist, 79(3), 323–336. https://doi.org/10.3398/064.079.0304

    Article  Google Scholar 

  • Beernaert, J., Scheirs, J., Leirs, H., Blust, R., & Verhagen, R. (2007). Non-destructive pollution exposure assessment by means of wood mice hair. Environmental Pollution, 145(2), 443–451. https://doi.org/10.1016/j.envpol.2006.04.025

    Article  CAS  Google Scholar 

  • Bellés, M., Albina, M. L., Sánchez, D. J., Corbella, J., & Domingo, J. L. (2002). Interactions in developmental toxicology: Effects of concurrent exposure to lead, organic mercury, and arsenic in pregnant mice. Archives of Environmental Contamination and Toxicology, 42, 93–98. https://doi.org/10.1007/s002440010296

    Article  CAS  Google Scholar 

  • Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29(4), 1165–1188. https://doi.org/10.1214/aos/1013699998

    Article  Google Scholar 

  • Bernabò, I., Guardia, A., Macirella, R., Tripepi, S., & Brunelli, E. (2017). Chronic exposures to fungicide pyrimethanil: Multi-organ effects on Italian tree frog (Hyla intermedia). Scientific Reports, 7(1), 6869. https://doi.org/10.1038/s41598-017-07367-6

    Article  CAS  Google Scholar 

  • Binkowski, ŁJ., Sawicka-Kapusta, K., Szarek, J., Strzyżewska, E., & Felsmann, M. (2013). Histopathology of liver and kidneys of wild living Mallards Anas platyrhynchos and Coots Fulica atra with considerable concentrations of lead and cadmium. Science of the Total Environment, 450–451, 326–333. https://doi.org/10.1016/j.scitotenv.2013.02.002

    Article  CAS  Google Scholar 

  • Bol'shakov, V. N., Berdyugin, K. I., & Kuznetsova, I. A. (2006). Mammals of the Middle Urals. Reference Guide. Yekaterinburg, Sokrates.

  • Brumbaugh, W. G., Mora, M. A., May, T. W., & Phalen, D. N. (2010). Metal exposure and effects in voles and small birds near a mining haul road in Cape Krusenstern National Monument. Alaska. Environmental Monitoring and Assessment, 170(1–4), 73–86. https://doi.org/10.1007/s10661-009-1216-y

    Article  CAS  Google Scholar 

  • Camizuli, E., Scheifer, R., Garnier, S., Monna, F., Lonso, R., Gourault, C., Hamm, G., Lachiche, C., Delivet, G., Chateau, C., & Alibert, P. (2018). Trace metals from historical mining sites and past metallurgical activity remain bioavailable to wildlife today. Scientific Reports, 8, 3436. https://doi.org/10.1038/s41598-018-20983-0

    Article  CAS  Google Scholar 

  • Chen, M.-L., Gerber, M. A., Thung, S. N., Thornton, J. C., & Chung, W. K. (1984). Morphometric study of hepatocytes containing hepatitis B surface antigen. The American Journal of Pathology, 114(2), 217–221.

    CAS  Google Scholar 

  • Cobbina, S. J., Chen, Y., Zhou, Z., Wu, X., Feng, W., Wang, W., Mao, G., Xu, H., Zhang, Z., Wu, X., & W., & Yang, L. (2015). Low concentration toxic metal mixture interactions: Effects on essential and non-essential metals in brain, liver, and kidneys of mice on sub-chronic exposure. Chemosphere, 132, 79–86. https://doi.org/10.1016/j.chemosphere.2015.03.013

    Article  CAS  Google Scholar 

  • Damek-Poprawa, M., & Sawicka-Kapusta, K. (2003). Damage to the liver, kidney, and testis with reference to burden of heavy metals in yellow-necked mice from areas around steelworks and zinc smelters in Poland. Toxicology, 186(1–2), 1–10. https://doi.org/10.1016/S0300-483X(02)00595-4

    Article  CAS  Google Scholar 

  • Damek-Poprava, M., & Sawicka-Kapusta, K. (2004). Histopathological changes in the liver, kidneys, and testes of bank voles environmentally exposed to heavy metal emissions from the steelworks and zinc smelter in Poland. Environmental Research, 96(1), 72–78. https://doi.org/10.1016/j.envres.2004.02.003

    Article  CAS  Google Scholar 

  • Davydova, Yu. A., & Mukhacheva, S. V. (2014). Industrial pollution does not cause an increased incidence of nephropathies in the bank vole. Russian Journal of Ecology, 45(4), 282–290. https://doi.org/10.1134/S1067413614040043

    Article  CAS  Google Scholar 

  • Davydova, Yu. A., Nesterkova, D. V., Mukhacheva, S. V., Chibiryak, M. V., & Sineva, N. V. (2017). Distinctive features of hepatocytes in five small mammal species (insectivores and rodents): Taxonomic versus ecological specificity. Zoomorphology, 136(4), 539–548. https://doi.org/10.1007/s00435-017-0368-5

    Article  Google Scholar 

  • Deparma, N. K. (1951). Krot (The Mole). Moscow, Gos. Izd. Nauch. Tekh Nauch. Lit.

  • Draper, N. R., & Smith, H. (1966). Applied regression analysis. Wiley.

    Google Scholar 

  • Fritsch, C., Cosson, R. P., Cœurdassier, M., Raoul, F., Giraudoux, P., Crini, N., de Vaufleury, A., & Scheifler, R. (2010). Responses of wild small mammals to a pollution gradient: Host factors influence metal and metallothionein levels. Environmental Pollution, 158(3), 827–840. https://doi.org/10.1016/j.envpol.2009.09.027

    Article  CAS  Google Scholar 

  • Gaidash, A. A., & Klimatskaya, L. G. (2004). Morphological changes in the liver of root voles exposed to small doses of fluorine. Sibirskii Nauchnyi Meditsinskii Zhurnal, 24(4), 118–121. Advance online publication. https://elibrary.ru/item.asp?id=9126544

  • Gaidyshev, I. P. (2015). Modeling stochastic and deterministic systems: AtteStat user’s guide. Retrieved October 20, 2022, from http://xn--80aab2abao2a1acibc.xn--p1ai/files/AtteStat_Manual_15.pdf

  • García-Barrera, T., Gómez-Ariza, J. L., González-Fernández, M., Moreno, F., García-Sevillano, M. A., & Gómez-Jacinto, V. (2012). Biological responses related to agonistic, antagonistic and synergistic interactions of chemical species. Analytical and Bioanalytical Chemistry, 403, 2237–2253. https://doi.org/10.1007/s00216-012-5776-2

    Article  CAS  Google Scholar 

  • Gebhardt, R., & Matz-Soja, M. (2014). Liver zonation: Novel aspects of its regulation and its impact on homeostasis. World Journal of Gastroenterology, 20(26), 8491–8504. https://doi.org/10.3748/wjg.v20.i26.8491

    Article  Google Scholar 

  • Gibson-Corley, K. N., Olivier, A. K., & Meyerholz, D. K. (2013). Principles for valid histopathologic scoring in research. Veterinary Pathology, 50(6), 1007–1015. https://doi.org/10.1177/0300985813485099

    Article  CAS  Google Scholar 

  • Godfrey, G., & Crowcroft, P. (1960). The life of the mole (Talpa europaea Linnaeus). Museum Press.

    Google Scholar 

  • Good, P. (2006). Resampling methods: A practical guide to data analysis. Springer.

    Google Scholar 

  • Gooneratne, S. R., Howell, J. McC., & Cook, R. D. (1980). An ultrastructural and morphometric study of the liver of normal and copper-poisoned sheep. The American Journal of Pathology, 99(2), 429–450. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1903487

  • Grigorkina, E. B., & Olenev, G. V. (2018). Migrations of rodents in the zone of local radioactive contamination at different phases of population dynamics and their consequences. Biology Bulletin, 45(1), 110–118. https://doi.org/10.1134/S1062359018010041

    Article  Google Scholar 

  • Gumucio, J. J. (1989). Hepatocyte heterogeneity: The coming of age from the description of a biological curiosity to a partial understanding of its physiological meaning and regulation. Hepatology, 9(1), 154–160. https://doi.org/10.1002/hep.1840090124

    Article  CAS  Google Scholar 

  • Hardisty, J. F., & Brix, A. E. (2005). Comparative hepatic toxicity: Prechronic/chronic liver toxicity in rodents. Toxicologic Pathology, 33, 35–40. https://doi.org/10.1080/01926230590522077

    Article  CAS  Google Scholar 

  • Ham, A. W., & Cormack, D. H. (1974). Histology. Lippincott.

    Google Scholar 

  • Heske, E. J., Levengood, J. M., & Caldwell, K. D. (2003). Concentrations of selected elements, physical condition, reproductive activity, and demographic patterns in small mammals inhabiting DePue Wildlife Management Area. Illinois Waste Management and Research Center, Retrieved October 20, 2022, from https://www.ideals.illinois.edu/bitstream/handle/2142/1972/RR-101.pdf?sequence=1

  • Holland, T., & Holland, C. (2011). Analysis of unbiased histopathology data from rodent toxicity studies (or, are these groups different enough to ascribe it to treatment?). Toxicologic Pathology, 39(4), 569–575. https://doi.org/10.1177/0192623311406289

    Article  Google Scholar 

  • Hunter, B. A., Johnson, M. S., & Thompson, D. J. (1987). Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem: 3. Small mammals. Journal of Applied Ecology, 24(2), 601–614. https://doi.org/10.2307/2403896

    Article  CAS  Google Scholar 

  • Jarrar, B. M., & Taib, N. T. (2012). Histological and histochemical alterations in the liver induced by lead chronic toxicity. Saudi Journal of Biological Sciences, 19(2), 203–210. https://doi.org/10.1016/j.sjbs.2011.12.005

    Article  CAS  Google Scholar 

  • Jungermann, K., & Kietzmann, T. (1996). Zonation of parenchymal and nonparenchymal metabolism in liver. Annual Review of Nutrition, 16(1), 179–203. https://doi.org/10.1146/annurev.nu.16.070196.001143

    Article  CAS  Google Scholar 

  • Kalisińska, E (Ed.). (2019). Mammals and birds as bioindicators of trace element contaminations in terrestrial environments: An ecotoxicological assessment of the northern hemisphere Cham, Springer.https://doi.org/10.1007/978-3-030-00121-6

  • Kessabi, K., Hwas, Z., Sassi, A., Said, K., & Messaoudi, I. (2014). Heavy metal accumulation and histomorphological alterations in Aphanius fasciatus (Pisces, Cyprinodontidae) from the Gulf of Gabes (Tunisia). Environmental Science and Pollution Research, 21(24), 14099–14109. https://doi.org/10.1007/s11356-014-3252-6

    Article  CAS  Google Scholar 

  • Kietzmann, T. (2017). Metabolic zonation of the liver: The oxygen gradient revisited. Redox Biology, 11, 622–630. https://doi.org/10.1016/j.redox.2017.01.012

    Article  CAS  Google Scholar 

  • Klevezal, G. A. (2017). Recording structures of mammals. Routledge.

    Book  Google Scholar 

  • Kuznetsova, T. I., & Khairullin, R. M. (2011). Morphometric analysis of ontogeny of the functional features of hepatocytes under conditions of long-term feeding on homogenized food. Izvestiya Vysshikh Uchebnykh Zavedenii, Povolzhskii Region, Meditsinskie Nauki, 3, 16–23. Advance online publication. https://elibrary.ru/item.asp?id=16922211

  • Lamers, W. H., Hilberts, A., Furt, E., Smith, J., Jonges, G. N., van Noorden, C. J., Janzen, J. W., Charles, R., & Moorman, A. F. (1989). Hepatic enzymic zonation: A reevaluation of the concept of the liver acinus. Hepatology, 10(1), 72–76. https://doi.org/10.1002/hep.1840100115

    Article  CAS  Google Scholar 

  • Levengood, J. M., & Heske, E. J. (2008). Heavy metal exposure, reproductive activity, and demographic patterns in white-footed mice (Peromyscus leucopus) inhabiting a contaminated floodplain wetland. Science of the Total Environment, 389(2–3), 320–328. https://doi.org/10.1016/j.scitotenv.2007.08.050

    Article  CAS  Google Scholar 

  • Macdonald, D. W., Atkinson, R. P. D., & Blanchard, G. (1997). Spatial and temporal patterns in the activity of European moles. Oecologia, 109, 88–97. https://doi.org/10.1007/s004420050062

    Article  Google Scholar 

  • Miska-Schramm, A., Kruczek, M., & Kapusta, J. (2014). Effect of copper exposure on reproductive ability in the bank vole (Myodes glareolus). Ecotoxicology, 23, 1546–1554. https://doi.org/10.1007/s10646-014-1295-6

    Article  CAS  Google Scholar 

  • Mukhacheva, S. V. (2004). Ecotoxicological aspects of food of small mammals in the gradient environmental pollution. Novosibirsk, ISEA. pp. 293–294. Advance online publication. https://www.elibrary.ru/item.asp?id=43039028

  • Mukhacheva, S. V., Davydova, Yu. A., & Kshnyasev, I. A. (2010). Responses of small mammal community to environmental pollution by emissions from a copper smelter. Russian Journal of Ecology, 41(6), 513–518. https://doi.org/10.1134/S1067413610060081

    Article  CAS  Google Scholar 

  • Mukhacheva, S. V., Davydova, Yu. A., & Vorobeichik, E. L. (2012). The role of heterogeneity of the environment in preservation of the diversity of small mammals under the conditions of strong industrial pollution. Doklady Biological Sciences, 447(1), 338–341. https://doi.org/10.1134/S0012496612010206

    Article  CAS  Google Scholar 

  • Mukhacheva, S. V. (2017). Long-term dynamics of heavy metal concentrations in the food and liver of bank voles (Myodes glareolus) in the period of reduction of emissions from a copper smelter. Russian Journal of Ecology, 48(6), 559–568. https://doi.org/10.1134/S1067413617060078

    Article  CAS  Google Scholar 

  • Mukhacheva, S. V. (2021). Long-term dynamics of small mammal communities in the period of reduction of copper smelter emissions: 1. Composition, abundance, and diversity. Russian Journal of Ecology, 52(1), 84–93. https://doi.org/10.1134/S1067413621010100

  • Murzina, S. A., Nefedova, Z. A., Pekkoeva, S. N., & Nemova, N. N. (2014). Histomorphological structure of the liver in roach (Rutilus rutilus) and pike (Esox lucius) from lakes with different levels of anthropogenic impact. Russian Journal of Ecology, 45(2), 143–149. https://doi.org/10.1134/S1067413614020052

    Article  CAS  Google Scholar 

  • Nesterkova, D. V. (2014). Distribution and abundance of European mole (Talpa europaea L.) in areas affected by two Ural copper smelters. Russian Journal of Ecology, 45(5), 429–436 https://doi.org/10.1134/S1067413614050129

  • Nesterkova, D. V. (2019). Impact of industrial pollution on the age structure of european mole (Talpa europaea L.) populations. Russian Journal of Ecology, 50(6), 578–582. https://doi.org/10.1134/S1067413619060110

  • Nesterkova, D. V., Vorobeichik, E. L., & Reznichenko, I. S. (2014). The effect of heavy metals on the soil–earthworm–European mole food chain under the conditions of environmental pollution caused by the emissions of a copper smelting plant. Contemporary Problems of Ecology, 7(5), 587–596. https://doi.org/10.1134/S1995425514050096

    Article  Google Scholar 

  • Nieburgs, H. E. (1967). Nuclear/cytoplasmic ratio (N/C) and nuclear chromatin. Diagnostic cell pathology in tissue and smears. New York, Grune and Stratton.

  • O'Neil, M., Johansen, K., McGee, S., Oleson, E., Burnham, C., & Dershwitz, M. (2013). Anatomy image atlas of aging: Liver, Advance online. publication http://www.pogoe.org/productid/21679

  • Ostoich, P. V., Beltcheva, M., & Metcheva, R. (2020). Nefarious, but in a different way: Comparing the ecotoxicity, gene toxicity and mutagenicity of lead (Pb) and cadmium (Cd) in the context of small mammal ecotoxicology. In genotoxicity and mutagenicity-mechanisms and test methods. IntechOpen. https://doi.org/10.5772/intechopen.89850

  • Pankakoski, E., Hyvärinen, H., Jalkanen, M., & Koivisto, I. (1993). Accumulation of heavy metals in the mole in Finland. Environmental Pollution, 80(1), 9–16. https://doi.org/10.1016/0269-7491(93)90003-7

    Article  CAS  Google Scholar 

  • Pankakoski, E., Koivisto, I., Hyvärinen, H., & Terhivuo, J. (1994). Shrews as indicators of heavy metal pollution. In J. F. Merritt, G. L. Kirkland Jr., & R. K. Rose (Eds.), Advances in the biology of shrews, 18, 136–147). Carnegie Museum of Natural History Special Publication.

  • Pereira, R., Pereira, M. L., Ribeiro, R., & Gonçalves, F. (2006). Tissues and hair residues and histopathology in wild rats (Rattus rattus L.) and Algerian mice (Mus spretus Lataste) from an abandoned mine area (Southeast Portugal). Environmental Pollution, 139(3), 561–575. https://doi.org/10.1016/j.envpol.2005.04.038

  • R Core Team (2019). R: a language and environment for statistical computing. Retrieved October 20, 2022, from http://www.R-project.org

  • Rogival, D., Scheirs, J., & Blust, R. (2007). Transfer and accumulation of metals in a soil–diet–wood mouse food chain along a metal pollution gradient. Environmental Pollution, 145(2), 516–528. https://doi.org/10.1016/j.envpol.2006.04.019

    Article  CAS  Google Scholar 

  • Salińska, A., Włostowski, T., & Zambrzycka, E. (2012). Effect of dietary cadmium and/or lead on histopathological changes in the kidneys and liver of bank voles Myodes glareolus kept in different group densities. Ecotoxicology, 21, 2235–2243. https://doi.org/10.1007/s10646-012-0979-z

    Article  CAS  Google Scholar 

  • Salińska, A., Włostowski, T., & Oleńska, E. (2013). Differential susceptibility to cadmium-induced liver and kidney injury in wild and laboratory-bred bank voles Myodes glareolus. Archives of Environmental Contamination and Toxicology, 65(2), 324–331. https://doi.org/10.1007/s00244-013-9896-2

    Article  CAS  Google Scholar 

  • Sánchez-Chardi, A., Marques, C. C., Gabriel, S. I., Capela-Silva, F., Cabrita, A. S., López-Fuster, M. J., Nadal, J., & Mathias, M. L. (2008). Haematology, genotoxicity, enzymatic activity and histopathology as biomarkers of metal pollution in the shrew Crocidura russula. Environmental Pollution, 156(3), 1332–1339. https://doi.org/10.1016/j.envpol.2008.02.026

    Article  CAS  Google Scholar 

  • Sánchez-Chardi, A., Ribeiro, C. A. O., & Nadal, J. (2009a). Metals in liver and kidneys and the effects of chronic exposure to pyrite mine pollution in the shrew Crocidura russula inhabiting the protected wetland of Doñana. Chemosphere, 76(3), 387–394. https://doi.org/10.1016/j.chemosphere.2009a.03.036

  • Sánchez-Chardi, A., Peñarroja-Matutano, C., Borrás, M., & Nadal, J. (2009b). Bioaccumulation of metals and effects of a landfill in small mammals: 3: Structural alterations. Environmental Research, 109(8), 960–967. https://doi.org/10.1016/j.envres.2009.08.004

    Article  CAS  Google Scholar 

  • Schipper, A. M., Loos, M., Ragas, A. M. J., Lopes, J. P. C., Nolte, B. T., Wijnhoven, S., & Leuven, R. S. E. W. (2008). Modeling the influence of environmental heterogeneity on heavy metal exposure concentrations for terrestrial vertebrates in river floodplains. Environmental Toxicology and Chemistry, 27(4), 919–932. https://doi.org/10.1897/07-252.1

    Article  CAS  Google Scholar 

  • Schmucker, D. L., Mooney, J. S., & Jones, A. L. (1978). Stereological analysis of hepatic fine structure in the Fischer 344 rat. Influence of sublobular location and animal age. The Journal of Cell Biology, 78(2), 319–337. https://doi.org/10.1083/jcb.78.2.319

  • Scheuhammer, A. M., Meyer, M. W., Sandheinrich, M. B., & Murray, M. W. (2007). Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio, 36(1), 12–18. https://www.jstor.org/stable/4315780

  • Sexton, K., & Hattis, D. (2007). Assessing cumulative health risks from exposure to environmental mixtures – Three fundamental questions. Environmental Health Perspectives, 115(5), 825–832. https://doi.org/10.1289/ehp.9333

    Article  CAS  Google Scholar 

  • Shinkarenko, Ye. A., & Savchenko A. A. (2015). Morphological peculiarities of the liver in common voles inhabiting the territory of Borodino coal deposits and recultivation areas. Morphology, 148(4), 28–31. https://europepmc.org/article/med/26601468

  • Sorensen, E. M. B. (1989). Validation of a morphometric analysis procedure using indomethacin-induced alterations in cultured hepatocytes. Toxicology Letters, 45(1), 101–110. https://doi.org/10.1016/0378-4274(89)90164-1

    Article  CAS  Google Scholar 

  • StatSoft, Inc. (2007) STATISTICA (data analysis software system), version 8.0. Retrieved October 20, 2022, from http://statsoft.ru

  • Stockhaus, C., van den Ingh, T., Rothuizen, J., & Teske, E. (2004). A multistep approach in the cytologic evaluation of liver biopsy samples of dogs with hepatic diseases. Veterinary Pathology, 41(5), 461–470. https://doi.org/10.1354/vp.41-5-461

    Article  CAS  Google Scholar 

  • Suzuki, Y., Watanabe, I., Tanabe, S., & Kuno, K. (2006). Trace elements accumulation and their variations with growth, sex and habitat: Effects on formosan squirrel (Callosciurus erythraeus). Chemosphere, 64(8), 1296–1310. https://doi.org/10.1016/j.chemosphere.2005.12.068

    Article  CAS  Google Scholar 

  • Świergosz-Kowalewska, R. (2001). Cadmium distribution and toxicity in tissues of small rodents. Microscopy Research and Technique, 55, 208–222. https://doi.org/10.1002/jemt.1171

    Article  Google Scholar 

  • Tête, N., Durfort, M., Rieffel, D., Scheifler, R., & Sánchez-Chardi, A. (2014). Histopathology related to cadmium and lead bioaccumulation in chronically exposed wood mice, Apodemus sylvaticus, around a former smelter. Science of the Total Environment, 481, 167–177. https://doi.org/10.1016/j.scitotenv.2014.02.029

    Article  CAS  Google Scholar 

  • Thoolen, B., Maronpot, R. R., Harada, T., Nyska, A., Rousseaux, C., Nolte, T., & Ward, J. M. (2010). Proliferative and nonproliferative lesions of the rat and mouse hepatobiliary system. Toxicologic Pathology, 38, 5–81. https://doi.org/10.1177/0192623310386499

    Article  Google Scholar 

  • Treinen-Moslen, M. (2001). toxic responses of the liver, in Casarett and Doull’s toxicology: The basic science of poisons (C.D. Klaassen, Ed.). New York. pp. 471–489.

  • Trubina, M. R., Vorobeichik, E. L., Khantemirova, E. V., Bergman, I. E., & Kaigorodova, S. Yu. (2014). Dynamics of forest vegetation after the reduction of industrial emissions: Fast recovery or continued degradation? Doklady Biological Sciences, 458, 302–305. https://doi.org/10.1134/S0012496614050135

  • Visscher, G. E., & Stifano, T. M. (1981). Practical applications of morphometric analysis in toxicology. Toxicologic Pathology., 9(2), 30–35. https://doi.org/10.1177/019262338100900204

    Article  Google Scholar 

  • Vorobeichik, E. L., & Kaigorodova, S. Yu. (2017). Long-term dynamics of heavy metals in the upper horizons of soils in the region of a copper smelter impacts during the period of reduced emission. Eurasian Soil Science, 50(8), 977–990. https://doi.org/10.1134/S1064229317080130

    Article  CAS  Google Scholar 

  • Vorobeichik, E. L., & Nesterkova, D. V. (2015). Technogenic boundary of the mole distribution in the region of copper smelter impacts: Shift after reduction of emissions. Russian Journal of Ecology, 46(4), 377–380. https://doi.org/10.1134/S1067413615040165

    Article  Google Scholar 

  • Watanabe, T., Shimada, H., & Tanaka, Y. (1978). Human hepatocytes and aging: A cytophotometrical analysis in 35 sudden-death cases. Virchows Archiv B Cell Pathology, 27(1), 307–316. https://doi.org/10.1007/BF02889003

    Article  CAS  Google Scholar 

  • Wu, X., Cobbina, S. J., Mao, G., Xu, H., Zhang, Z., & Yang, L. (2016). A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environmental Science and Pollution Research, 23(9), 8244–8259. https://doi.org/10.1007/s11356-016-6333-x

    Article  CAS  Google Scholar 

  • Zhang, M. L., Guo, A. X., & VandenBussche, C. J. (2016). Morphologists overestimate the nuclear-to-cytoplasmic ratio. Cancer Cytopathology, 124(9), 669–677. https://doi.org/10.1002/cncy.21735

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to E.V. Vorobeichik, N.A. Gorgolyuk and all anonymous reviewers for their insightful comments on the manuscript and to our colleague E.Kh. Akhunova for her help with chemical analysis.

Funding

This study was supported by the State Contract (No 122021000076-9) of the Institute of Plant and Animal Ecology, the Ural Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript and the drawing of charts were written by Yulia Davydova, and all authors commented on previous versions of the manuscript. The sample collection, data sorting, and experimental operation were completed by Dina Nesterkova and Svetlana Mukhacheva. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yulia A. Davydova.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors agree to publish this research (including any individual details or images) in Environmental Monitoring and Assessment.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2673 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydova, Y.A., Nesterkova, D.V. & Mukhacheva, S.V. Morphological parameters of hepatocytes in the European mole (Talpa europaea) and herb field mouse (Sylvaemus uralensis) under industrial pollution: Qualitative and quantitative assessment. Environ Monit Assess 195, 300 (2023). https://doi.org/10.1007/s10661-022-10810-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10810-5

Keywords

Navigation