Skip to main content
Log in

Atmospheric odor dispersion from oil refinery flare system: a case study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A flare stack is an indispensable device in the oil and gas industry for allowing the safe combustion of gases into the atmosphere, especially during emergencies. However, it is not ideal for the routine disposal of gaseous waste, as it is subject to meteorological influences and poor operational control. In addition, it can be affected by toxic currents and thus pose a potential risk of odors; in view of this, an assessment must be made of the implications of burning on the environment and health. Atmospheric dispersion modelling has proved to be a very useful tool for this purpose. In light of this, an attempt has been made in this work to evaluate the impact of H2S on the well-being (odor perception) of the community in the surrounding area of an oil refinery, where the temporary burning of rich gas in H2S occurs in a chemical flare, and operational factors have an influence on atmospheric dispersion. The odor assessment was carried out with the aid of AERMOD which was adapted to estimate the maximum odor concentration for very short periods by means of peak-to-mean ratios. The results showed that H2S detection can reach a probability rate of 42% at 3.5 km distance from the flare (in a time interval of 5 s) with a relatively high degree of annoyance (3.0 AU). However, some operational procedures can reduce the probability of odor detection to 29% and the degree of annoyance to 2.6 AU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

source parameters (AER, 2014)

Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon request.

References

  • AER. (2014). AERflare user guide: A model for temporary flaring permits, non-routine flaring and routine flaring air dispersion modelling for Sour gas facilities version 2.01. Calgary: Alberta Energy Regulator.

  • Amoore, J. E. (1985). The perception of hydrogen sulfide odor in relation to setting an ambient standard. Prepared for California Air Resources Board.

  • Bader, A., Baukal, C. E., & Bussman, W. (2011). Selecting the proper flare systems. Chemical Engineering Progress, 107(7), 45–50.

    CAS  Google Scholar 

  • Bluett, J., Gimson, N., Fisher, G., Heydenrych, C., Freeman, T., & Godfrey, J. (2004). Good practice guide for atmospheric dispersion modelling. 522.

  • Brzustowski, T. A. (1972). A mode for predicting the shapes and lengths of turbulent diffusion flames over elevated industrial flares. In 22nd Canadian Chemical Engineering Conference (pp. 605–606). [Place of publication not identified]: [publisher not identified].

  • Cooper, C. D., Godlewski, V. J., Hanson, R., Koletzke, M., & Webster, N. (2001). Odor investigation and control at a WWTP in orange county. Florida. Environmental Progress, 20(3), 133–143. https://doi.org/10.1002/ep.670200308

    Article  CAS  Google Scholar 

  • Drew, G. H., Smith, R., Gerard, V., Burge, C., Lowe, M., Kinnersley, R., et al. (2007). Appropriateness of selecting different averaging times for modelling chronic and acute exposure to environmental odours. Atmospheric Environment, 41(13), 2870–2880. https://doi.org/10.1016/j.atmosenv.2006.09.022

    Article  CAS  Google Scholar 

  • Hemminki, K., & Niemi, M. L. (1982). Community study of spontaneous abortions: Relation to occupation and air pollution by sulfur dioxide, hydrogen sulfide, and carbon disulfide. International Archives of Occupational and Environmental Health, 51(1), 55–63. https://doi.org/10.1007/BF00378410

    Article  CAS  Google Scholar 

  • Johnson, M. R., & Kostiuk, L. W. (2000). Efficiencies of low-momentum jet diffusion flames in crosswinds. Combustion and Flame, 123(1–2), 189–200. https://doi.org/10.1016/S0010-2180(00)00151-6

    Article  CAS  Google Scholar 

  • Johnson, M. R., & Kostiuk, L. W. (2002). A parametric model for the efficiency of a flare in crosswind. Proceedings of the Combustion Institute, 29(2), 1943–1950. https://doi.org/10.1016/S1540-7489(02)80236-X

    Article  CAS  Google Scholar 

  • Karageorgos, P., Latos, M., Mpasiakos, C., Chalarakis, E., Dimitrakakis, E., Daskalakis, C., et al. (2010). Characterization and dispersion modeling of odors from a piggery facility. Journal of Environment Quality, 39(6), 2170. https://doi.org/10.2134/jeq2010.0083

    Article  CAS  Google Scholar 

  • Kostiuk, L. W., Johnson, M. R., & Thomas, G. (2001). University of Alberta Flare Research Project. Effects of a fuel diluent on the efficiencies of jet diffusion flames in crossflow, 1(November 1996), 1–6.

  • Kostiuk, L., Johnson, M., & Thomas, G. (2004). University Of Alberta Flare Research Project: final report November 1996 - September 2004. 2. ed.

  • Latos, M., Karageorgos, P., Mpasiakos, C. H., Kalogerakis, N., & Lazaridis, M. (2010a). Dispersion modeling of odours emitted from pig farms: Winter-spring measurements. In Global Nest Journal (Vol. 12, pp. 46–53). https://doi.org/10.30955/gnj.000690

  • Latos, M., Karageorgos, P., Kalogerakis, N., & Lazaridis, M. (2010b). Dispersion of odorous gaseous compounds emitted from wastewater treatment plants. Water, Air, & Soil Pollution 2010b 215:1, 215(1), 667–677. https://doi.org/10.1007/S11270-010-0508-8

  • Latos, M., Karageorgos, P., Kalogerakis, N., & Lazaridis, M. (2011). Dispersion of odorous gaseous compounds emitted from wastewater treatment plants. Water, Air, & Soil Pollution, 215(1–4), 667–677. https://doi.org/10.1007/s11270-010-0508-8

    Article  CAS  Google Scholar 

  • Leonardos, G., Kendall, D., & Barnard, N. (1969). Odor threshold determinations of 53 odorant chemicals. Journal of the Air Pollution Control Association, 19(2), 91–95. https://doi.org/10.1080/00022470.1969.10466465

    Article  CAS  Google Scholar 

  • Mederos, F. S., Rodríguez, M. A., Ancheyta, J., & Arce, E. (2006). Dynamic modeling and simulation of catalytic hydrotreating reactors. Energy and Fuels, 20(3), 936–945. https://doi.org/10.1021/ef050407v

    Article  CAS  Google Scholar 

  • Moreira, D., & Tirabassi, T. (2004). Modelo matemático de dispersão de poluentes na atmosfera: Um instrumento técnico para a gestão ambiental. Ambiente & Sociedade, 7(2), 159–172. https://doi.org/10.1590/S1414-753X2004000200010

    Article  Google Scholar 

  • St. Croix Sensory, Inc. (2005). A review of the science and technology of odor measurement. Prepared for the Air Quality Bureau of the iowa Department of Natural Resources. https://www.iowadnr.gov/Portals/idnr/uploads/air/environment/afo/odor_measurement.pdf

  • Nicell, J. A. (2003). Expressions to relate population responses to odor concentration. Atmospheric Environment, 37(35), 4955–4964. https://doi.org/10.1016/j.atmosenv.2003.08.028

    Article  CAS  Google Scholar 

  • Nicell, J. A. (2009). Assessment and regulation of odour impacts. Atmospheric Environment, 43(1), 196–206. https://doi.org/10.1016/j.atmosenv.2008.09.033

    Article  CAS  Google Scholar 

  • Ontario Ministry of the Environment and Climate Change. (2019). Technical Bulletin: modelling open flares under O.Reg. 419/05. Ontario Regulation 419/05 Air Pollution – Local Air Quality (O. Reg. 419/05).

  • Piringer, M., Petz, E., Groehn, I., & Schauberger, G. (2007). A sensitivity study of separation distances calculated with the Austrian Odour Dispersion Model (AODM). Atmospheric Environment, 41(8), 1725–1735. https://doi.org/10.1016/j.atmosenv.2006.10.028

    Article  CAS  Google Scholar 

  • PROTIM - Banco de Dados Meteorológicos. (n.d.).

  • Strosher, M. T. (2000). Characterization of emissions from diffusion flare systems. Journal of the Air and Waste Management Association, 50(10), 1723–1733. https://doi.org/10.1080/10473289.2000.10464218

    Article  CAS  Google Scholar 

  • U.S. EPA. (1992). Reference guide to odor thresholds for hazardous air pollutants listed in the Clean Air Act Amendments of 1990 (p. 100). Environmental Protection Agency.

    Google Scholar 

  • U.S. EPA. (2018). AERMOD model formulation and evaluation. Epa-454/ R-18–003.

  • U.S. EPA. (2012). Parameters for properly designed and operated flares.

  • Varner, V., Fox, S., Schwartz, R., & Wozniak, R. (2007). Pressure-assisted flare emissions testing. In American -- Japanese Flame Research Committees International Symposium (pp. 1–12).

  • WebGIS - Free Terrain Data - Geographic Information Systems Resource - GIS. (n.d.).

  • WHO European Centre for Environment and Health. (2006). Air Quality Guidelines. Air Quality Guidelines, 91, 1–496.

    Google Scholar 

  • Zadakbar, O., Abbassi, R., Khan, F., Karimpour, K., Golshani, M., & Vatani, A. (2011). Analyse des risques des conditions d’extinction de torche au sein d’une installation de traitement de gaz. Oil and Gas Science and Technology, 66(3), 521–530. https://doi.org/10.2516/ogst/2010027

    Article  CAS  Google Scholar 

  • Zarei, T., & Ezadi, A. A. (2020). Study on the flare tip of a gas refinery with various designs of windshields using CFD simulations. Brazilian Journal of Chemical Engineering, 37(1), 227–236. https://doi.org/10.1007/s43153-020-00017-x

    Article  CAS  Google Scholar 

  • Zelensky, M. J., & Zelt, B. W. (2019). Pseudo-source parameters for flares: Derivation, implementation, and comparison. Journal of the Air and Waste Management Association, 69(4), 450–458. https://doi.org/10.1080/10962247.2018.1547802

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this article.

Corresponding author

Correspondence to Sergio M. Corrêa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, S.L.A., Corrêa, S.M. Atmospheric odor dispersion from oil refinery flare system: a case study. Environ Monit Assess 194, 563 (2022). https://doi.org/10.1007/s10661-022-10202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10202-9

Keywords

Navigation