Skip to main content

Advertisement

Log in

Evaluation of soil-gas radon concentrations from different geological units with varying strata in a crystalline basement complex of southwestern Nigeria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The aim of this study is to determine the variation of soil-gas radon concentrations from different rock formations in Ogbomoso, southwestern Nigeria. The radon concentrations at different five geological domains in Ogbomoso are determined with respect to depth. The measurements varied from the surface (0 cm) to 100 cm depth, with an interval of 20 cm. At all the geological domains (Porphyroclastic, Granite, Quartzite, Migmatite and Banded gneiss), radon has its minimum emission over migmatite at 0 cm, while its maximum emissions occured over granite and banded gneiss at 80 cm. The overall soil-gas radon concentrations in Ogbomoso varied from 0.06 to 26.5 kBq/m3, which is within the natural limit of 0.4 to 40 kBq/m3 based on the International Commission on Radiological Protection’s recommendation. An F-ratio of 6.989 and a p-value of 0.001 were obtained for the first inferential hypothesis, while an F-ratio of 2.489 and a p-value of 0.076 were obtained for the second inferential hypothesis using ANOVA test. The post hoc (using Tukey HSD and Duncan) tests revealed that at 60 + cm, depth controls the level of radon concentrations being emanated from the subsurface. The pollution index in Ogbomoso is of level 1 at 80 cm and level 0 (safe limit) at other depths. In conclusion, the soil-gas radon emission depends on the local geology and lithological sequences (depths). Cracks that could act as passage for indoor radon at the floors of the buildings around the polluted zones should be avoided in order to have a sustainable city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from Adagunodo et al., 2019a)

Fig. 2

modified from Afolabi et al., 2013; Olafisoye et al., 2013)

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  • Abodunrin, O. P., & Akinloye, M. K. (2020). Determination of radon exhalation rates from soil around buildings in Lagos environments using passive measurement technique. Journal of Environmental Health Science and Engineering, 18(1), 129–135. https://doi.org/10.1007/s40201-020-00446-3

    Article  CAS  Google Scholar 

  • Aburnurad, K. M., & Al-Tamimi, M. (2001). Emanation power of radon and its concentration in the soil and rocks. Radiation Measurements, 34, 423.

    Article  Google Scholar 

  • Adabanija, M. A., Afolabi, A. O., Olatunbosun, A. T., & Kolawole, L. L. (2014). Integrated approach to investigation of occurrence and quality of groundwater in Ogbomoso North, Southwestern Nigeria. Environmental Earth Sciences, 73(1), 139–162. https://doi.org/10.1007/s12665-014-3401-8

    Article  CAS  Google Scholar 

  • Adagunodo, T. A., Akinloye, M. K., Sunmonu, L. A., Aizebeokhai, A. P., Oyeyemi, K. D., & Abodunrin, F. O. (2018a). Groundwater exploration in Aaba residential area of Akure, Nigeria. Frontiers in Earth Science, 6, 66. https://doi.org/10.3389/feart.2018.00066

    Article  Google Scholar 

  • Adagunodo, T. A., Bayowa, O. G., Usikalu, M. R., & Ojoawo, A. I. (2019a). Radiogenic heat production in the coastal plain sands of Ipokia, Dahomey Basin, Nigeria. MethodsX, 6C, 1608–1616. https://doi.org/10.1016/j.mex.2019.07.006

    Article  Google Scholar 

  • Adagunodo, T. A., George, A. I., Ojoawo, I. A., Ojesanmi, K., & Ravisankar, R. (2018b). Radioactivity and radiological hazards from a kaolin mining field in Ifonyintedo, Nigeria. MethodsX, 5C, 362–374. https://doi.org/10.1016/j.mex.2018.04.009

    Article  Google Scholar 

  • Adagunodo, T. A., Hammed, O. S., Usikalu, M. R., Ayara, W. A., & Ravisankar, R. (2018c). Data on the radiometric survey over a kaolinitic terrain in Dahomey Basin, Nigeria. Data in Brief, 18C, 814–822. https://doi.org/10.1016/j.dib.2018.03.088

    Article  Google Scholar 

  • Adagunodo, T. A., Sunmonu, L. A., Adabanija, M. A., Omeje, M., Odetunmibi, O. A., & Ijeh, V. (2019b). Statistical assessment of radiation exposure risks to farmers in Odo Oba, Southwestern Nigeria. Bulletin of the Mineral Research and Exploration, 159, 201–217. https://doi.org/10.19111/bulletinofmre.495321

  • Adagunodo, T. A., Sunmonu, L. A., & Emetere, M. E. (2018). Heavy metals’ data in soils for agricultural activities. Data in Brief, 18C, 1847–1855. https://doi.org/10.1016/j.dib.2018.04.115

    Article  Google Scholar 

  • Adagunodo, T. A., Sunmonu, L. A., Oladejo, O. P., & Olafisoye, E. R. (2013). Groundmagnetic investigation into the cause of the subsidence in the abandoned local government secretariat, Ogbomoso, Nigeria. ARPN Journal of Earth Sciences, 2(3), 101–109.

    Google Scholar 

  • Ademola, J. A., & Oyeleke, O. A. (2017). Radon-222 in groundwater and effective dose due to ingestion and inhalation in the city of Ibadan, Nigeria. Journal of Radiological Protection, 37(1), 189–200. https://doi.org/10.1088/1361-6498/37/1/189

    Article  CAS  Google Scholar 

  • Adepelumi, A. A., Ajayi, T. R., & Ojo, A. O. (2005). Radon soil-gas as a geological tool: Case study from basement of Ile-Ife, Nigeria. Environmental Geology, 48, 762–770.

    Article  CAS  Google Scholar 

  • Afolabi, O. A., Kolawole, L. L., Abimbola, A. F., Olatunji, A. S., & Ajibade, O. M. (2013). Preliminary study of the geology and structural trends of lower rocks in Proterozoic Basement Rocks in Ogbomoso, SW Nigeria. Journal of Environmental and Earth Science, 3(8), 82–95.

    Google Scholar 

  • Ajayi, T. R., & Adepelumi, A. A. (2001). Reconnaissance soil-gas radon survey over the faulted crystalline area of Ile-Ife, Nigeria. Environmental Geology, 41, 608–613.

    Article  CAS  Google Scholar 

  • Ajibade, A. C., Rahaman, M. A., & Ogezi, A. E. O. (1988). The Precambrian of Nigeria, a geochronological survey. Publication of the Geological Survey of Nigeria, 2(1), 45–53.

    Google Scholar 

  • Ajiboye, Y., Isinkaye, M. O., & Khanderkar, M. U. (2018). Spatial distribution mapping and radiological hazard assessment of groundwater and soil gas radon in Ekiti State, Southwest Nigeria. Environmental Earth Sciences, 77, 545.

    Article  CAS  Google Scholar 

  • Ajiboye, Y., Isinkaye, M. O., Badmus, G. O., Faloye, O. T., & Atoiki, V. (2022). Pilot groundwater radon mapping and the assessment of health risk from heavy metals in drinking water of southwest, Nigeria. Heliyon, 8, e08840. https://doi.org/10.1016/j.heliyon.2022.e08840

    Article  CAS  Google Scholar 

  • Amiotte, S. P., Probst, J., & Ludwig, W. (2003). Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob. Biogeochem. Cycles, 17, 1038.

    Google Scholar 

  • Anderson, R. S., & Anderson, S. P. (2010). Geomorphology: The mechanics and chemistry of landscapes. Cambridge University Press, UK., 187, ISBN: 978–1–139–78870–0.

  • Ball, T. K., Nicholson, R. A., & Peachey, D. (1983). Effects of meteorological variables on certain soil gases used to detect buried ore deposits. Transactions Institution of Mining and Metallurgy, 92, B183–B190.

    Google Scholar 

  • Bello, S., Nasiru, R., Garba, N. N., & Adeyemo, D. J. (2020). Annual effective dose associated with radon, gross alpha and gross beta radioactivity in drinking water from gold mining areas of Shanomo and Bagwai, Kano State, Nigeria. Microchemical Journal, 154, 104551. https://doi.org/10.1016/j.microc.2019.104551

    Article  CAS  Google Scholar 

  • Bonforte, A., Federico, C., Giammanco, S., Guglielmino, F., Liuzzo, M., & Neri, M. (2012). Soil gases and SAR data reveal hidden faults on the sliding flank of Mt. Etna (Italy). EGU General Assembly, 251, 27–40.

    Google Scholar 

  • Chen, Z., Li, Y., Liu, Z., Wang, J., Zhou, X., & Du, J. (2018). Radon emission from soil gases in the active fault zones in the capital of China and its environmental effects. Scientific Reports, 8, 16772. https://doi.org/10.1038/s41598-018-35262-1

    Article  CAS  Google Scholar 

  • Chernow Barbara, A., Vallasi George, A. (2007). ed., “Ogbomoso”. Columbia Encyclopedia (5thed.). Pp 2007–2114, Columbia University Press, Columbia.

  • Choubey, V. M., & Ramola, R. C. (1997). Correlation between geology and radon levels in groundwater, soil and indoor air in Bhilangana Valley, Garhwal Himalaya, India. Environmental Geology, 32(4), 258–262.

    Article  CAS  Google Scholar 

  • Ciotoli, G. (2014). Soil gas distribution in the main coseismic surface rupture zone of the 1980, MS = 6.9, Irpinia earthquake (southern Italy). Journal of Geophysical Research Solid Earth, 119(3), 2440–2461.

  • DURRIDGE Company. (2013). DURRIDGE Radon Instrumentation (RAD7), accessory owner’s manual. DURRIDGE Company Inc., Billerica, USA. http://www.durridge.com/documentation/RADH2OManual.pdf

  • Esan, D. T., Scridhar, M. K. C., Obed, R., Ajiboye, Y., Olubodun, B., & Oni, O. M. (2020). Determination of residential soil gas risk indices over lithological units of South-western Nigerian University. Scientific Reports, 10, 7368. https://doi.org/10.1038/s41598-020-64217-8

    Article  CAS  Google Scholar 

  • Falconer, B. E. (1911). The geology and geography of northern Nigeria. Macmillan Publishers.

    Google Scholar 

  • Ferreira, A. O., Pecequilo, B. R. S., & Aquino, R. R. (2011). Application of a “sealed can technique” and CR-39 detectors for measuring radon emanation from undamaged granitic ornamental building materials. Radioprotection, 46(6), S49–S54. https://doi.org/10.1051/radiopro/20116557s

    Article  Google Scholar 

  • Fields, R. W. (2010). Climate change and indoor air quality. Contractor report prepared for U.S. Environmental Protection Agency, Office of Radiation and Indoor Air, 1–15.

  • Fu, C. C., Yang, T. F., Chen, C. H., Lee, L. C., Wu, Y. M., Liu, T. K., & Lai, T. H. (2017). Spatial and temporal anomalies of soil gas in northern Taiwan and its tectonic and seismic implications. Journal of Asian Earth Sciences, 149, 64–77.

    Article  Google Scholar 

  • Fujiyoshi, R., Ohno, M., Okamoto, K., & Umegaki, K. (2015). Soil radon (222Rn) monitoring in a forest site in Fukushima, Japan. Environmental Earth Sciences, 73(8), 1–8.

    Article  CAS  Google Scholar 

  • GB50325–2001. (2006). Code for indoor environmental pollution control of civil building engineering in China, Chinese Hospital Architecture and Equipment, China.

  • Ghias, S., Satti, K. H., Khan, M., Dilband, M., Naseem, A., Jabbar, A., Kali, S., Ur-Rehman, T., Nawab, J., Aqeel, M., Khan, M. A., & Zafar, M. I. (2021). Health risk assessment of radioactive footprints of the urban soils in the residents of Dera Ghazi Khan, Pakistan. Chemosphere, 267, 129171. https://doi.org/10.1016/j.chemosphere.2020.129171

    Article  CAS  Google Scholar 

  • Gneiss. (2021). Origin of gneiss and its composition. Available at https://nature.berkeley.edu/classes/eps2/wisc/gneiss.html

  • Gutasfon, G., & Krasny, J. (1994). Crystalline aquifers: Their occurrence, use and importance. Hydrogeology Journal, 2, 64–75.

    Article  Google Scholar 

  • Gundersen, L. C. (1993). The correlation between bedrock geology and indoor radon: Where it works and where it doesn’t some examples from the eastern United States. International Radon Conference, USA, 1993.

  • IARC (International Agency for Research on Cancer). (1998). Man-made fibres and radon. Lyon, France: IARC Press; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 43, France.

  • IBM SPSS Statistics. (2011). IBM SPSS Statistics version 20 Core System User’s Guide. Available at ftp://public.dhe.ibm.com/software/analytics/spss/documentation/statistics/20.0/en/client/Manuals/IBM_SPSS_Statistics_Core_System_Users_Guide.pdf

  • ICRP (International Commission on Radiological Protection). (1981). Limits on inhalation of radon daughters by workers, Publication 32. Pergamon Press.

    Google Scholar 

  • ICRP (International Commission on Radiological Protection). (1991). Recommendations of the international commission on radiological protection, ICRP Publication 60. Annals of the ICRP, Vol. 21, Pergamon Press, Oxford, UK.

  • Iskandar, D., Iida, T., Yamazawa, H., Moriizumi, J., Koarashi, J., Yamasoto, K., Yamasaki, K., Shimo, M., Tsujimoto, T., Ishikawa, S., Fukuda, M., & Kojima, H. (2005). The transport mechanisms of 222Rn in soil at Tateishi as an anomaly spot in Japan. Applied Radiation and Isotopes, 63, 401–408.

    Article  CAS  Google Scholar 

  • Javadinejad, S., Eslamian, S., & Ostad-Ali-Askari, K. (2021). The analysis of the most important climate parameters affecting performance of crop variability in a changing climate. International Journal of Hydrology Science and Technology, 11(1), 1–25. https://doi.org/10.1504/IJHST.2021.112651

    Article  Google Scholar 

  • Javadinejad, S., Ostad-Ali-Askari, K., & Jafary, F. (2019). Using simulation model to determine the regulation and to optimize the quantity of chlorine injection in water distribution networks. Modeling Earth Systems and Environment, 5, 1015–1023. https://doi.org/10.1007/s40808-019-00587-x

    Article  Google Scholar 

  • Jibril, M. K., Garba, N. N., Nasiru, R., & Ibrahim, N. (2021). Assessment of radon concentrations in water sources from Sabon Gari local government area, Kaduna State, Nigeria. FUDMA Journal of Sciences, 5(1), 254–260. https://doi.org/10.33003/fjs-2021-0501-563

  • Joel, E. S., Omeje, M., Olawole, O. C., Adeyemi, G. A., Akinpelu, A., Embong, Z., & Saeed, M. A. (2021). In-situ assessment of natural terrestrial-radioactivity from uranium-238 (238U), thorium-232 (232Th) and potassium-40 (40K) in coastal urban-environment and its possible health implications. Scientific Reports, 11, 17555.

    Article  CAS  Google Scholar 

  • Kemski, J., Klingel, R., Siehl, A., & Stegemann, R. (2005). Radon transfer from ground to houses and prediction of indoor radon in Germany based on geological information. Radioactivity in the Environment, 7, 820–832.

    Article  CAS  Google Scholar 

  • Kenton, W. (2021a). Analysis of variance (ANOVA). Fundamental analysis, tools for fundamental analysis, Investopedia. https://www.investopedia.com/terms/a/anova.asp. Retrieved on November 16, 2021a.

  • Kenton, W. (2021b). Kurtosis, Investopedia. 28 Liberty Street, 7th Floor, New York, NY 10005, USA. Available at https://www.investopedia.com/terms/k/kurtosis.asp

  • Lara, E., Rocha, Z., Palmieri, H. E. L., Sntos, T. O., Rios, F. J., & Oliveira, A. H. (2015). Radon concentration in soil gas and its correlations with pedologies, permeabilities and 226Ra content in the soil of the Metropolitan Region of Belo Horizonte–RMBH, Brazil. Radiation Physics and Chemistry, 116, 317–320.

    Article  CAS  Google Scholar 

  • MacAuley, J., & Fall, U. (2008). Radon: Invisible health threat in the home. Environmental Health Association of Nova Scotia, Canada. Available at https://www.environmentalhealth.ca/fall08radon.html

  • MacDonald, A. M., & Davies, J. (2000). A brief review of groundwater for rural water supply in Sub-Saharan Africa. B.G.S. Technical Report, W.C./00/33.

  • Machin, D., Campbell, M. J., Walters, S. J. (2007). Medical statistics: a textbook for the health sciences, Fourth Edition, John Wiley and Sons, Ltd. The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England. ISBN: 978–0–470–02519–2.

  • Mazur, D., Janik, M., Loskiewicz, J., Olko, P., & Swakori, J. (1999). Measurements of radon concentration in soil gas by CR-39 detectors. Radiation Measurements, 31, 295.

    Article  CAS  Google Scholar 

  • Minda, M., Tóth, G., Horváth, I., Barnet, I., Hámori, K., & Tóth, E. (2008). Indoor radon mapping and its relation to geology in Hungary. Environmental Geology, 57(3), 601–609. https://doi.org/10.1007/s00254-008-1329-6

    Article  CAS  Google Scholar 

  • Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia, 22, 67–72.

    Article  Google Scholar 

  • Moreno, V., Baixeras, C., Font, L., & Bach, J. (2008). Indoor radon levels and their dynamics in relation with the geological characteristics of La Garrotxa, Spain. Radiation Measurements, 43, 1532–1540.

    Article  CAS  Google Scholar 

  • Normality Testing. (2019). Normality testing, skewness and kurtosis. Available at https://help.gooddata.com/doc/en/reporting-and-dashboards/maql-analytical-query-language/maql-expression-reference/aggregation-functions/statistical-functions/predictive-statistical-use-cases/normality-testing-skewness-and-kurtosis. Retrieved on November 11, 2021.

  • Obed, R. I., Adesunloro, G. M., & Popoola, O. I. (2018). Soil-gas radon monitoring in Ibadan: Innovative approach. IOSR Journal of Applied Physics, 10(5), 33–40.

    Google Scholar 

  • Olafisoye, E. R., Sunmonu, L. A., Adagunodo, T. A., & Oladejo, O. P. (2013). Impact assessment of solid waste on groundwater: A case study of Aarada dumpsite, Nigeria. ARPN Journal of Earth Sciences, 2(2), 45–53.

    Google Scholar 

  • Olasehinde, P. I., Amadi, A. N., Dan-Hassan, M. A., Jimoh, M. O., Okunlola, I. .A. (2015). Statistical assessment of groundwater quality in Ogbomosho southwest Nigeria. American Journal of Mining and Metallurgy, 3(1), 21–28. https://doi.org/10.12691/ajmm-3-1-4

  • Olise, F. S., Akinnagbe, D. M., & Olusogba, O. S. (2016). Radionuclide and radon levels in soil and groundwater from solid mineral-hosted area, south-western, Nigeria. Cogent Environmental Science, 2(1), 1–12.

    Article  CAS  Google Scholar 

  • Omeje, M., Adagunodo, T. A., Akinwumi, S. A., Adewoyin, O. O., Joel, E. S., Husin, W., & Mohd, S. H. (2019). Investigation of driller’s exposure to natural radioactivity and its radiological risks in low latitude region using neutron activation analysis. International Journal of Mechanical Engineering and Technology, 10(1), 1897–1920.

    Google Scholar 

  • Oni, E. A., Oladapo, O. O., Oni, O. M., Aremu, A. A., & Obinomen, D. D. (2018). Investigation of radon concentration in Oduduwa University, Ile-Ife, Osun state. International Journal of Public Health and Health System, 3(5), 84–90.

    Google Scholar 

  • Oni, O. M., Amoo, P. A., & Aremu, A. A. (2019a). Simulation of absorbed dose to human organs and tissues associated with radon in groundwater use in southwestern Nigeria. Radiation Physics and Chemistry, 155, 44–47. https://doi.org/10.1016/j.radphyschem.2018.08.029

    Article  CAS  Google Scholar 

  • Oni, O. M., Isola, G. A., Oladapo, O. O., & Oni, E. A. (2012). Estimation of lifetime fatality risk from indoor radon in some offices in a Nigerian University. Research Journal of Environmental and Earth Sciences, 4(2), 131–133.

    CAS  Google Scholar 

  • Oni, O. M., Yusuff, I. M., & Adagunodo, T. A. (2019b). Measurement of radon-222 concentration in soil-gas of Ogbomoso southwestern Nigeria using RAD7. International Journal of History and Scientific Studies Research, 1(3), 01–08.

    Google Scholar 

  • Orosun, M. M., Ajibola, T. B., Ehinlafa, O. E., Issah, A. K., Salawu, B. N., Ishaya, S. D., Ochommadu, K. K., & Adewuyi, A. D. (2022). Annual effective dose assessment of radon in drinking water from abandoned tin and cassiterite mining site in Oyun, Kwara State, Nigeria. Pollution, 8(1), 181–192. https://doi.org/10.22059/poll.2021.326962.1136

  • Ostad-Ali-Askari, K., Shayannejad, M., & Ghorbanizadeh-Kharazi, H. (2016). Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan, Iran. KSCE Journal of Civil Engineering, 21(1), 134–140. https://doi.org/10.1007/s12205-016-0572-8

    Article  Google Scholar 

  • Ostad-Ali-Askar, K., Su, R., & Liu, L. (2018). Water resources and climate change. Journal of Water and Climate Change, 9(2), 239. https://doi.org/10.2166/wcc.2018.999

    Article  Google Scholar 

  • Population City. (2015). Ogbomosho population. Available at http://population.city/nigeria/ogbomosho/. Retrieved on December 12, 2021.

  • Quarto, M., Pugliese, M., La Verde, G., Loffredo, F., & Roca, V. (2015). Radon exposure assessment and relative effective dose estimation to inhabitants of Puglia region, South Italy. International Journal of Environmental Research and Public Health, 12, 14948–14957.

    Article  CAS  Google Scholar 

  • Rahaman, M. A. (1976). Review of basement geology of southwestern Nigeria. Elizabethan Publishing Company Nigeria, Pp 41–58.

  • Ramola, R. C., Choubey, V. M., Prasad, Y., Prasad, G., & Bartarya, S. K. (2006). Variation in radon concentration and terrestrial gamma radiation dose rates in relation to the lithology in southern part of Kumaon Himalaya, India. Radiation Measurements, 41, 714–720.

    Article  CAS  Google Scholar 

  • Scheib, C., Appleton, J. D., Miles, J. C., & Hodgkinson, E. (2013). Geological controls on radon potential in England. Proceedings of the Geologists’ Association, 124, 910–928.

    Article  Google Scholar 

  • Shu’aibu H.K., Khandaker M.U., Baballe A., Tata S., Adamu M.A. (2021). Determination of radon concentration in groundwater of Gadau, Bauchi State, Nigeria and estimation of effective dose. Radiation Physics and Chemistry, 178, 108934. https://doi.org/10.1016/j.radphyschem.2020.108934

    Article  CAS  Google Scholar 

  • Sundal, A. V., Henriksen, H., Soldal, O., & Strand, T. (2004). The influence of geological factors on indoor radon concentrations in Norway. Science of the Total Environment, 328, 41–53.

    Article  CAS  Google Scholar 

  • SDG (Sustainable Development Goals). (2019). Sustainable development goal 11, make cities and human settlements inclusive, safe, resilient and sustainable, targets and indicators. https://sustainabledevelopment.un.org/sdg11. Retrived on March 31, 2022.

  • Sunmonu, L. A., Adagunodo, T. A., Olafisoye, E. R., & Oladejo, O. P. (2012). The groundwater potential evaluation at industrial estate Ogbomoso southwestern Nigeria. RMZ-Materials and Geoenvironment, 59(4), 363–390.

    Google Scholar 

  • Tanner, A. B. (1980). Radon migration in the ground: A supplementary review in T.F. Gesell and W.M. Lowder. Natural Radiation Environment III, Symposium Proceedings, Houston, Texas, 1, 5–56.

    Google Scholar 

  • Ulomov, V. I., & Mavashev, B. Z. (1971). Forerunners of the Tashkent earthquake. Izv. Akad. Nauk Uzb. SSR: 188–200.

  • UNSCEAR (United Nation Scientific Committee on the Effects of Atomic Radiation). (2000). Sources and effects of ionizing radiation, 2000 report to general assembly, with scientific annexes, Volume I Sources, Annex B 115–116, United Nation New York.

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). (1988). Sources, effects and risk of ionizing radiation. UNSCEAR report to the general assembly United Nations.

    Google Scholar 

  • Usikalu, M. R., Onumejor, C. A., Achuka, J. A., Akinpelu, A., Omeje, M., & Adagunodo, T. A. (2020). Monitoring of radon concentration for different building types in Covenant University, Nigeria. Cogent Engineering, 7, 1759396. https://doi.org/10.1080/23311916.2020.1759396

    Article  Google Scholar 

  • Varley, N. R., & Flowers, A. G. (1992). Radon and its correlation with some geological features of the south-west of England. Radiation Protection Dosimetry, 45, 245–248.

    Article  CAS  Google Scholar 

  • Vizzini, F., & Brai, M. (2012). In-soil radon anomalies as precursors of earthquakes: A case study in the SE slope of Mt. Etna in a period of quite stable weather conditions. Journal of Environmental Radioactivity, 113(113), 131–141.

  • Wang, X., Li, Y., Du, J., & Zhou, X. (2014). Correlations between radon in soil gas and the activity of seismogenic faults in the Tangshan area, North China. Radiation Measurements, 60(1), 8–14.

    Article  CAS  Google Scholar 

  • Wang, Y. J., Wu, T. L., Zhou, D. M., & Chen, M. H. (2017). Advances in soil heavy metal pollution evaluation based on bibliometrics analysis. Journal of Agro-Environment Science, 36(12), 2365–2378.

    Google Scholar 

  • Yang, Y., Li, Y., Guan, Z., Chen, Z., Zhang, L., Lv, C. J., & Sun, F. (2018). Correlations between the radon concentrations in soil gas and the activity of the Anninghe and the Zemuhe faults in Sichuan, southwestern of China. Applied Geochemistry, 89, 23–33.

    Article  CAS  Google Scholar 

  • Yusuff, I. M., Adagunodo, T. A., Omoloye, M. A., Olanrewaju, A. M. (2019). Interdependency of soil-gas radon-222 concentration on soil porosity at different soil-depths. IOP Conf. Series: Journal of Physics: Conf. Series, 1299, 012099. https://doi.org/10.1088/1742-6596/1299/1/012099

  • Zahorowski, W., Chambers, C. D., & Henderson-Sellers, A. (2004). Ground based radon-222 observation and their application to atmospheric studies. Journal of Environmental Radioactivity, 76, 3–33.

    Article  CAS  Google Scholar 

  • Zhou, X., Chen, Z., & Cui, Y. (2015). Environmental impact of CO2, Rn, Hg degassing from the rupture zones produced by Wenchuan. MS 8.0 earthquake in western Sichuan, China. Environmental Geochemistry and Health, 38(5), 1067–1082. https://doi.org/10.1007/s10653-015-9773-1

Download references

Acknowledgements

We appreciate the MethodsX for their consent to adapt Fig. 1 from Adagunodo et al. (2019a). Furthermore, the permissions given by the Journal of Environmental and Earth Science and the ARPN Journal of Earth Sciences to reproduce Fig. 2 from Afolabi et al. (2013) and Olafisoye et al. (2013) are equally appreciated. The reviewers and the editorial efforts are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theophilus Aanuoluwa Adagunodo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oladapo, O.O., Adagunodo, T.A., Aremu, A.A. et al. Evaluation of soil-gas radon concentrations from different geological units with varying strata in a crystalline basement complex of southwestern Nigeria. Environ Monit Assess 194, 486 (2022). https://doi.org/10.1007/s10661-022-10173-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10173-x

Keywords

Navigation