Skip to main content

Advertisement

Log in

Freshwater aquatic reptiles (Testudines and Crocodylia) as biomonitor models in assessing environmental contamination by inorganic elements and the main analytical techniques used: a review

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Despite the general lack of studies that use reptiles as bioindicators, the value of freshwater turtles and crocodilians in ecotoxicology has been proven, due to their importance as sentinel species. The aim of this study was to compile information on the use of freshwater turtles and crocodilians as environmental biomonitors of inorganic element contamination. We searched for articles in databases using specific keywords. A total of 104 studies published between the years 1970 and 2020 were collected. We noted a general increase in the number of studies involving turtles and crocodilians during the study time period. The Order Testudines were the subjects of 46% of the analysed publications, and the Order Crocodylia accounted for 54%. Within these studies, we counted 39 species (turtles n = 29 and crocodilians n = 10). Forty chemical elements were evaluated in the analysed articles, of which the majority represented non-essential elements (Hg, Cd, Pb). Although internal organs constituted the main biological matrix chosen for each group (37%), we observed an increase in the use of non-destructive matrices in both groups (scale, blood, tail muscle, carapace). The majority of analysed studies used HNO3 for the sample decomposition, with the majority of analyses being performed using atomic absorption spectroscopy (53%). Mainly blank controls (19%), analyte recovery (18%) and replicates (18%) were used as methods of validating analytical procedures. Furthermore, the studies used certified reference materials, which measure the accuracy of the methods used. We conclude that the increase in the use of aquatic reptiles in environmental monitoring research is mainly due to their ability to reveal integrated changes in ecosystems, aiding in environmental public policy decision-making and effective management plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  • Adel, M., Saravi, H. N., Dadar, M., Niyazi, L., & Ley-Quinonez, C. P. (2017). Mercury, lead, and cadmium in tissues of the Caspian Pond Turtle (Mauremys caspica) from the southern basin of Caspian Sea. Environmental Science and Pollution Research, 24: 3244-3250.

  • Albers, P. H., Sileo, L., & Mulhern, B. M. (1986). Effects of environmental contaminants on snapping turtles of a tidal wetland. Archives of Environmental Contamination and Toxicology, 15: 39-49.

  • Allender, M. C., Dreslik, M. J., Patel, B., Luber, E. L., Byrd, J., Phillips, C. A., & Scott, J. W. (2015). Select metal and metalloid surveillance of free-ranging Eastern box turtles from Illinois and Tennessee (Terrapene carolina carolina). Ecotoxicology, 24(6), 1269-1278.

  • Almli, B., Mwase, M., Sivertsen, T., Musonda, M. M., & Flåøyen, A. (2005). Hepatic and renal concentrations of 10 trace elements in crocodiles (Crocodylus niloticus) in the Kafue and Luangwa rivers in Zambia. Science of the total environment, 337: 75-82.

  • Ammann, A. A. (2007). Inductively coupled plasma mass spectrometry (ICP MS): A versatile tool. Journal of Mass Spectrometry, 42(4), 419–427.

    Article  CAS  Google Scholar 

  • Barbieri, E. (2010). Acute toxicity of ammonia in white shrimp (Litopenaeus- schmitti) (Burkenroad, 1936, Crustacea) at different salinity levels. Aquaculture, 306(1–4), 329–333.

    Article  CAS  Google Scholar 

  • Barbieri, E., & Doi, S. A. (2012). Acute toxicity of ammonia on juvenile cobia (Rachycentron canadum, Linnaeus, 1766) according to the salinity. Aquaculture International, 20(2), 373–382.

    Article  CAS  Google Scholar 

  • Barin, J. S., Pereira, J. S. F., Mello, P. A., Knorr, C. L., Moraes, D. P., Mesko, M. F., Nóbrega, J. A., Korn, M. G. A., & Flores, E. M. M. (2012). Focused microwave-induced combustion for digestion of botanical samples and metals determination by ICP OES and ICP-MS. Talanta, 94, 308–314.

    Article  CAS  Google Scholar 

  • Bearhop, S., Furness, R. W., Hilton, G. M., Votier, S. C., & Waldron, S. (2003). A forensic approach to understanding diet and habitat use from stable isotope analysis of (avian) claw material.

  • Bickham, J. W., Sandhu, S., Hebert, P. D., Chikhi, L., & Athwal, R. (2000). Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology. Mutation research/Reviews in Mutation research, 463: 33-51.

  • Bishop, B. E., Savitzky, B. A., & Abdel-Fattah, T. (2010). Lead bioaccumulation in emydid turtles of an urban lake and its relationship to shell disease. Ecotoxicology and Environmental Safety, 73: 565-571.

  • Buenfil-Rojas, A. M., Alvarez-Legorreta, T., & Cedeño-Vázquez, J. R. (2018). Mercury and metallothioneins in blood fractions and tissues of captive Morelet’s crocodiles in Quintana Roo, Mexico. Chemosphere, 199, 630–636.

    Article  CAS  Google Scholar 

  • Buenfil-Rojas, A. M., Álvarez-Legorreta, T. & Cedeño-Vázquez, J. R. (2015). Metals and metallothioneins in Morelet’s crocodile (Crocodylus moreletii) from a transboundary river between Mexico and Belize. Archives of environmental contamination and toxicology, 68, 265-273.

  • Buenfil-Rojas, A. M., Alvarez-Legorreta, T., Cedeño-Vazquez, J. R., Rendón-von Osten, J., & González-Jáuregui, M. (2020). Distribution of metals in tissues of captive and wild Morelet’s crocodiles and the potential of metallothioneins in blood fractions as a biomarker of metal exposure. Chemosphere, 244, 125551.

  • Burger, J., & Gibbons, J. W. (1998). Trace elements in egg contents and egg shells of slider turtles (Trachemys scripta) from the Savannah River Site. Archives of environmental contamination and toxicology, 34: 382-386.

  • Burger, J., Gochfeld, M., Rooney, A. A., Orlando, E. F., Woodward, A. R., & Guillette, L. J., Jr. (2000). Metals and metalloids in tissues of American alligators in three Florida lakes. Archives of Environmental Contamination and Toxicology, 38(4), 501–508.

    Article  CAS  Google Scholar 

  • Burger, J., Jeitner, C., Schneider, L., Vogt, R., & Gochfeld, M. (2009). Arsenic, cadmium, chromium, lead, mercury, and selenium levels in blood of four species of turtles from the Amazon in Brazil. Journal of Toxicology and Environmental Health, Part A, 73(1), 33–40.

    Article  CAS  Google Scholar 

  • Buschinelli, J. T., Barbosa, C. Q., & Trivelato, G. C. (1990). Chumbo x trabalhadores: um jogo lento e fatal. Proteção, 7(2), 42–50. (2). p.42–50, 1990.

  • Campbell, K. R., & Campbell, T. S. (2000). Lizard contaminant data for ecological risk assessment. Reviews of Environmental Contamination and Toxicology, 39–116.

  • Campbell, K. R., & Campbell, T. S. (2001). Lizard contaminant data for ecological risk assessment. Reviews of 393 Environmental Contamination and Toxicology, 39-116.

  • Campbell, J. W., Waters, M. N., Tarter, A., & Jackson, J. (2010). Heavy metal and selenium concentrations in liver tissue from wild American alligator (Alligator mississippiensis) livers near Charleston, South Carolina. Journal of wildlife diseases, 46: 234-1241.

  • Camus, A. C., Mitchell, M. M., Williams, J. E. & Jowett, P. L. (1998). Elevated lead levels in farmed American alligators Alligator mississippiensis consuming nutria Myocastor coypus meat contaminated by lead bullets. Journal of the World Aquaculture Society, 29, 370-376.

  • Cedillo-Leal, C. N., Cienfuegos-Rivas, E. & Escobedo-Galván, A. H. (2018). High levels of heavy metals in scutes and eggs of Morelet's crocodiles (Crocodylus moreletii) from Northeast Mexico. The Southwestern Naturalist, 63, 71-74.

  • Conant, R., & Collins, J. T. (1998). A field guide to reptiles & amphibians: eastern and central North America (Vol. 12). Houghton Mifflin Harcourt.

  • Correia, J., Cesar, R., Marsico, E., Diniz, G. T. N., Zorro, M. C., & Castilhos, Z. (2014). Mercury contamination in alligators (Melanosuchus niger) from Mamirauá Reservoir (Brazilian Amazon) and human health risk assessment. Environmental Science and Pollution Research, 21: 13522-13527.

  • Delany, M. F., Bell, J. U., & Sundlof, S. F. (1988). Concentrations of contaminants in muscle of the American alligator in Florida. Journal of Wildlife Diseases, 24(1), 62–66.

    Article  CAS  Google Scholar 

  • DiGeronimo, P. M., Di Girolamo, N., Grasperge, B. J., Gregory, B. B., Jowett, P., & Nevarez, J. G. (2018). Assessment of Blood Lead, Zinc, and Mercury Concentrations and Cholinesterase Activity in Captive-reared Alligator Snapping Turtles (Macrochelys temminckii) in Louisiana, USA. Journal of wildlife diseases, 54: 553-557.

  • Du Bray, E. A. (1995). Preliminary compilation of descriptive geoenvironmental mineral deposit models (pp. 95–831). Denver, CO: US Geological Survey.

  • Du Preez, M., Govender, D., & Bouwman, H. (2016). Heavy metals in muscle tissue of healthy crocodiles from the Kruger National Park. South Africa. Afr. J. Ecol., 54(4), 519–523. https://doi.org/10.1111/aje.12308

    Article  Google Scholar 

  • Du Preez, M., Govender, D., Kylin, H., & Bouwman, H. (2018). Metallic elements in nile crocodile eggs from the kruger national park, South Africa. Ecotoxicology and Environmental Safety, 148: 930-941.

  • Dupre, J. P., Hardaway, C. J., Sneddon, J., Lyons, E., & Christian, O. E. (2018). Determination of selected metals in alligator snapping turtle (Macroclemys temminckii) by inductively coupled plasma-optical emission spectrometry. Microchemical Journal, 137: 27-29.

  • Dyc, C., Far, J., Gandar, F., Poulipoulis, A., Greco, A., Eppe, G., & Das, K. (2016). Toxicokinetics of selenium in the slider turtle, Trachemys scripta. Ecotoxicology, 25: 727-744.

  • Eggins, S., Schneider, L., Krikowa, F., Vogt, R. C., Silveira, R. D., & Maher, W. (2015). Mercury concentrations in different tissues of turtle and caiman species from the Rio Purus Amazonas Brazil. Environmental Toxicology and Chemistry, 34(12), 2771–2781.

    Article  CAS  Google Scholar 

  • Gardner, S. C., & Oberdorster, E. (Eds.). (2016). Toxicology of reptiles. CRC Press.

  • Gheorghe, S., Stoica, C., Vasile, G. G., Nita-Lazar, M., Stanescu, E., & Lucaciu, I. E. (2017). Metals toxic effects in aquatic ecosystems: modulators of water quality. Water quality, 60–89.

  • Gidis, M. & Kaska, Y. (2004). Population size, reproductive ecology and heavy metal levels in eggshells of the Nile soft-shell turtle (Trionyx triunguis) around thermal Lake Kuekuertlue(sulphurous), Mugla-Turkey. Fresenius Environmental Bulletin, 13, 405-412.

  • Green, A. D., Buhlmann, K. A., Hagen, C., Romanek, C., & Gibbons, J. W. (2010). Mercury contamination in turtles and implications for human health. Journal of environmental health, 72:14-23.

  • Grillitsch, B., & Schiesari, L. (2010). 12 The ecotoxicology of metals in reptiles. In Ecotoxicology of amphibians and reptiles (pp. 337–448). CRC Press New York.

  • Gomes, D. F., Moreira, R. A., Sanches, N. A. O., & do Vale, C. A., Daam, M. A., Gorni, G. R., & Bastos, W. R. . (2020). Dynamics of (total and methyl) mercury in sediment, fish, and crocodiles in an Amazonian Lake and risk assessment of fish consumption to the local population. Environmental Monitoring and Assessment, 192(2), 1–10.

    Article  CAS  Google Scholar 

  • Guillette, L. J., Jr., Pickford, D. B., Crain, D. A., Rooney, A. A., & Percival, H. F. (1996). Reduction in penis size and plasma testosterone concentrations in juvenile alligators living in a contaminated environment. General and Comparative Endocrinology, 101(1), 32–42.

    Article  CAS  Google Scholar 

  • Guillory, G., Hardaway, C. J., Merchant, M. E., & Sneddon, J. (2011). Determination of selected metals in alligator (Alligator mississippiensis) tissues by inductively coupled plasma-optical emission spectrometry. Instrumentation Science & Technology, 39(4), 368–373.

    Article  CAS  Google Scholar 

  • Guillot, H., Bonnet, X., Bustamante, P., Churlaud, C., Trotignon, J., & Brischoux, F. (2018). Trace element concentrations in european pond turtles (Emysorbicularis) from Brenne Natural Park, France. Bulletin of environmental contamination and toxicology, 101: 300-304.

  • Guirlet, E., & Das, K. (2012). Cadmium toxicokinetics and bioaccumulation in turtles: Trophic exposure of Trachemys scripta elegans. Ecotoxicology, 21(1), 18–26.

    Article  CAS  Google Scholar 

  • Hage, D. S., & Carr, J. D. (2012). Química analítica e análise quantitativa. 1ª. Ed.

  • Hammerton, K. M., Jayasinghe, N., Jeffree, R. A., & Lim, R. P. (2003). Experimental study of blood lead kinetics in estuarine crocodiles (Crocodylus porosus) exposed to ingested lead shot. Archives of environmental contamination and toxicology, 45: 390-398.

  • Heaton-Jones, T. G., Homer, B. L., Heaton-Jones, D. L., & Sundlof, S. F. (1997). Mercury distribution in American alligators (Alligator mississippiensis) in Florida. Journal of Zoo and Wildlife Medicine, 62–70.

  • Heinz, G. H., Percival, H. F., & Jennings, M. L. (1991). Contaminants in American alligator eggs from lake Apopka, lake Griffin, and lake Okeechobee, Florida. Environmental Monitoring and Assessment, 16, 277-285.

  • Helwig, D. D., & Hora, M. E. (1983). Polychlorinated biphenyl, mercury, and cadmium concentrations in Minnesota snapping turtles. Bulletin of 10.1007/s10661-021-09212-w Environmental Contamination and Toxicology, 30: 186-190.

  • Hoenig, M., & de Kersabiec, A. M. (1996). Sample preparation steps for analysis by atomic spectroscopy methods: Present status. Spectrochimica Acta Part B: Atomic Spectroscopy, 51(11), 1297–1307.

    Article  Google Scholar 

  • Hopkins, W. A. (2006). Use of tissue residues in reptile ecotoxicology: A call for integration and experimentalism (pp. 35–62). Taylor and Francis.

    Google Scholar 

  • Horai, S., Itai, T., Noguchi, T., Yasuda, Y., Adachi, H., Hyobu, Y., Riyadi, A., Boggs, A., Lowers, R., Guillette, L., Jr., & Tanabe, S. (2014). Concentrations of trace elements in American alligators (Alligator mississippiensis) from Florida, USA. Chemosphere, 108, 159–167.

    Article  CAS  Google Scholar 

  • Huo, J., Dong, A., Yan, J., & Dong, A. (2020). Effects of cadmium on the activities of ALT and AST as well as the content of TP in plasma of freshwater turtle Mauremys reevesii. Environmental Science and Pollution Research, 27(15), 18025–18028.

    Article  CAS  Google Scholar 

  • Jagoe, C. H., Arnold-Hill, B., Yanochko, G. M., Winger, P. V., & Brisbin, I. L., Jr. (1998). Mercury in alligators (Alligator mississippiensis) in the southeastern United States. Science of the Total Environment, 213(1–3), 255–262.

    Article  CAS  Google Scholar 

  • Jeffree, R. A., Markich, S. J., & Tucker, A. D. (2005). Patterns of metal accumulation in osteoderms of the Australian freshwater crocodile, Crocodylus johnstoni. Science of the total environment, 336: 71-80.

  • Jeffree, R. A., Markich, S. J., & Twining, J. R. (2001). Element concentrations in the flesh and osteoderms of estuarine crocodiles (Crocodylus porosus) from the Alligator Rivers Region, Northern Australia: biotic and geographic effects. Archives of environmental contamination and toxicology, 40: 236-245.

  • Khan, B., & Tansel, B. (2000). Mercury bioconcentration factors in American alligators (Alligator mississippiensis) in the Florida Everglades. Ecotoxicology and Environmental Safety, 47(1), 54–58.

    Article  CAS  Google Scholar 

  • Kitana, N., & Callard, I. P. (2008). Effect of cadmium on gonadal development in freshwater turtle (Trachemys scripta, Chrysemys picta) embryos. Journal of Environmental Science and Health, Part A, 43: 262-271.

  • Krug, F. J., & Rocha, F. R. P. (2016). Métodos de preparo de amostras para análise elementar. Sociedade Brasileira de Quimica, São Paulo, ISSN: 978–85–64099–22–7 EditSBQ.

  • Kumawat, T. K., Sharma, A., Sharma, V., & Chandra, S. (2018). Keratin waste: the biodegradable polymers. In Keratin. IntechOpen.

  • Lacerda, L. D. D., & Malm, O. (2008). Contaminação por mercúrio em ecossistemas aquáticos: Uma análise das áreas críticas. Estudos Avançados, 22(63), 173–190.

    Article  Google Scholar 

  • Lance, V. A., Horn, T. R., Elsey, R. M. & de Peyster, A. (2006). Chronic incidental lead ingestion in a group of captive-reared alligators (Alligator mississippiensis): possible contribution to reproductive failure. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 142, 30-35.

  • Lance, V., Joanen, T., & McNease, L. (1983). Selenium, vitamin E, and trace elements in the plasma of wild and farm-reared alligators during the reproductive cycle. Canadian Journal of Zoology, 61(8), 1744–1751.

    Article  CAS  Google Scholar 

  • Lawson, A. J., Moore, C. T., Rainwater, T. R., Nilsen, F. M., Wilkinson, P. M., Lowers, R. H. & Jodice, P. G. (2020). Nonlinear patterns in mercury bioaccumulation in American alligators are a function of predicted age. Science of the Total Environment, 707, 135103.

  • Lázaro, W. L., de Oliveira, R. F., dos Santos-Filho, M., da Silva, C. J., Malm, O., Ignácio, Á. R., & Díez, S. (2015). Non-lethal sampling for mercury evaluation in crocodilians. Chemosphere, 138, 25–32.

    Article  CAS  Google Scholar 

  • Malik, R. N., Ghaffar, B., & Hashmi, M. Z. (2013). Trace metals in Ganges soft-shell turtle (Aspideretes gangeticus) from two barrage: Baloki and Rasul, Pakistan. Environmental Science and Pollution Research, 20: 8263-8273.

  • Manolis, S. C., Webb, G. J., Britton, A. R., Jeffree, R. A., & Markich, S. J. (2002). Trace element concentrations of wild saltwater crocodile eggs.

  • Marrugo-Negrete, J., Durango-Hernández, J., Calao-Ramos, C., Urango-Cárdenas, I., & Díez, S. (2019). Mercury levels and genotoxic effect in caimans from tropical ecosystems impacted by gold mining. Science of the Total Environment, 664, 899-907.

  • Martínez-López, E., Gómez-Ramírez, P., Espín, S., Aldeguer, M. P., & García-Fernández, A. J. (2017). Influence of a former mining area in the heavy metals concentrations in blood of free-living Mediterranean pond turtles (Mauremys leprosa). Bulletin of environmental contamination and toxicology, 99: 167-172.

  • McNaught; A. Wilkinson (1997). «catalyst». IUPAC — Compendium of Chemical Terminology (the “Gold Book”). Interactive version. Online version (2006-) corrected by Nic, Jirat, Kosata; update por A. Jenkins 2012–08–19 ver.2.3.2 2ª ed. Oxford: Blackwell Scientific Publications. ISBN 0–9678550–9–8https://doi.org/10.1351/goldbook.C00876. Consultado em 28 de novembro de 2013.

  • Meyers‐Schöne, L., Shugart, L. R., Walton, B. T., & Beauchamp, J. J. (1993). Comparison of two freshwater turtle species as monitors of radionuclide and chemical contamination: DNA damage and residue analysis. Environmental Toxicology and Chemistry: An International Journal, 12: 1487-1496.

  • Meyers-Schöne, L., & Walton, B. T. (1994). Turtles as monitors of chemical contaminants in the environment. Reviews of environmental contamination and toxicology, 93–153.

  • Meza-Martínez, M., Ossa-Velázquez, J. D. L., Hernández-Gómez, J. & Marrugo-Negrete, J. (2020). Mercurio total en hígado de Trachemys callirostris (Gray, 1856)(Testudines: Emydidae) en tres zonas de la Mojana, Sucre-Colombia. Revista UDCA Actualidad & Divulgación Científica, 23.

  • Mindell, E. (1996). Vitaminas: guia prático das propriedades e aplicações. ISSB: 8506021502 publishing house Melhoramentos.

  • Morrison, G. H. (1979). General aspects of trace analytical methods. iv: recommandations for nomenclature, standard procedures and reporting of experimental data for surface analysis techniques. on page 2246.

  • Namroodi, S., Zaccaroni, A., Rezaei, H., & Hosseini, S. M. (2017). European pond turtle (Emys orbicularis persica) as a biomarker of environmental pollution in Golestan and Mazandaran provinces, Iran. Veterinary Research Forum, 8: 333.

  • Nilsen, F. M., Bowden, J. A., Rainwater, T. R., Brunell, A. M., Kassim, B. L., Wilkinson, P. M. & Schock, T. B. (2019). Examining toxic trace element exposure in American alligators. Environment international, 128: 324-334.

  • Nilsen, F. M., Kassim, B. L., Delaney, J. P., Lange, T. R., Brunell, A. M., Guillette, L. J., Jr., & Schock, T. B. (2017). Trace element biodistribution in the American alligator (Alligator mississippiensis). Chemosphere, 181, 343–351.

    Article  CAS  Google Scholar 

  • Nilsen, F. M., Parrott, B. B., Bowden, J. A., Kassim, B. L., Somerville, S. E., Bryan, T. A. & Guillette Jr, L. J. (2016). Global DNA methylation loss associated with mercury contamination and aging in the American alligator (Alligator mississippiensis). Science of the Total Environment, 545, 389-397.

  • Nilsen, F. M., Rainwater, T. R., Wilkinson, P. M., Brunell, A. M., Lowers, R. H., Bowden, J. A., Guillette,L., Long, S & Schock, T. B. (2020). Examining maternal and environmental transfer of mercury into American alligator eggs. Ecotoxicology and environmental safety, 189, 110057.

  • Nisa, Z.U., Sultana, S., Sultana, T. & Jabeen, F. (2015). Accumulation of heavy metals (Cu, Zn, Ni, Cd, Co, Pb and Cr) in blood of freshwater turtles from Balloki headworks and Trimmu barrage, Punjab, Pakistan. Pure and Applied Biology, 4, 280.

  • Nisa, Z.U., Sultana, S., Sultana, T., Al-Ghanim, K.A., Al-Ghanem, M.K.A., Al-Misned, F. & Mahbood, S. (2019). Environmental Exposure to Metals and Bioaccumulation in the Liver of Three Freshwater Species of Turtles from Two Different Rivers. Polish Journal of Environmental Studies, 28.

  • Nomura, C. S., Silva, C. S. D., & Oliveira, P. V. (2008). Análise direta de sólidos por espectrometria de absorção atômica com atomização em forno de grafite: Uma revisão. Química Nova, 31(1), 104–113.

    Article  CAS  Google Scholar 

  • Oliveira, D. C. M., Correia, R. R. S., Marinho, C. C., & Guimarães, J. R. D. (2015). Mercury methylation in sediments of a Brazilian mangrove under different vegetation covers and salinities. Chemosphere, 127, 214–221.

    Article  CAS  Google Scholar 

  • Ortiz-Santaliestra, M. E., Rodríguez, A., Pareja-Carrera, J., Mateo, R., & Martinez-Haro, M. (2019). Tools for non-invasive sampling of metal accumulation and its effects in Mediterranean pond turtle populations inhabiting mining areas. Chemosphere, 231, 194-206.

  • Papathanassiou, E. (1983). Effects of cadmium and mercury ions and respiration and survival of the common prawn Palaemon serratus (Pennant). Revue Internationale D’océanographie Médicale, 72, 21–35.

    CAS  Google Scholar 

  • Quintela, F. M., Lima, G. P., Silveira, M. L., Costa, P. G., Bianchini, A., Loebmann, D., & Martins, S. E. (2019). High arsenic and low lead concentrations in fish and reptiles from Taim wetlands, a Ramsar site in southern Brazil. Science of The Total Environment, 660: 1004-1014.

  • Rainwater, T. R., Adair, B. M., Platt, S. G., Anderson, T. A., Cobb, G. P. & McMurry, S. T. (2002). Mercury in Morelet's crocodile eggs from northern Belize. Archives of Environmental Contamination and Toxicology, 42, 319-324

  • Rainwater, T. R., Wu, T. H., Finger, A. G., Cañas, J. E., Yu, L., Reynolds, K. D.& McMurry, S. T. (2007). Metals and organochlorine pesticides in caudal scutes of crocodiles from Belize and Costa Rica. Science of the Total Environment, 373, 146-156.

  • Rendón-Valencia, B., Zapata, L. M., C. B., Brian, Páez, V. P. & Palacio, J. A. (2014). Mercury levels in eggs, embryos, and neonates of Trachemys callirostris (Testudines, Emydidae). Acta Biológica Colombiana, 19, 499-506.

  • Rie, M. T., Lendas, K. A., & Callard, I. P. (2001). Cadmium: tissue distribution and binding protein induction in the painted turtle, Chrysemys picta. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130: 41-51.

  • Roe, J. H., Hopkins, W. A., Baionno, J. A., Staub, B. P., Rowe, C. L. & Jackson, B. P. (2004). Maternal transfer of selenium in Alligator mississippiensis nesting downstream from a coal‐burning power plant. Environmental Toxicology and Chemistry: An International Journal, 23, 1969-1972.

  • Ruckel, S. W. (1993). Mercury concentrations in alligator meat in Georgia. In Proc Annu Conf Southeast Assoc Fish Wildl Agencies, 47, 287-292.

  • Rumbold, D. G., Fink, L. E., Laine, K. A., Niemczyk, S. L., Chandrasekhar, T., Wankel, S. D. & Kendall, C. (2002). Levels of mercury in alligators (Alligator mississippiensis) collected along a transect through the Florida Everglades. Science of the total environment, 297, 239-252.

  • Sandu, C., Farkas, A., Musa-Iacob, R., Ionica, D., Parpala, L., Zinevici, V., ... & Köhler, H. R. (2008). Monitoring pollution in River Mures, Romania, Part I: the limitation of traditional methods and community response. Large Rivers, 91–106.

  • Santos, E. D., Souza, D. T. M. T. O., Mascarenhas-Junior, P. B., Santos, R. L., Rameh-de-Albuquerque, L. C., & Correia, J. M. S. (2020). Exotic Testudines Trachemys elegans (Wied-Neuwied, 1839) and Trachemys dorbigni (Duméril & Bibron, 1835) in an Atlantic forest fragment, northeastern Brazil. Herpetology Notes, 13, 1013–1016.

    Google Scholar 

  • Schaumburg, L. G., Poletta, G. L., Siroski, P. A., & Mudry, M. D. (2012). Baseline values of Micronuclei and Comet Assay in the lizard Tupinambis merianae (Teiidae, Squamata). Ecotoxicology and Environmental Safety, 84, 99–103.

    Article  CAS  Google Scholar 

  • Schifer, T. D. S., Junior, S. B., & Montano, M. A. E. (2005). Aspectos Toxicológicos Do Chumbo. Infarma, 17(5–6), 67–71.

    Google Scholar 

  • Schmidt, N. K. (1996). Fisiologia Animal–Adaptação e Meio Ambiente. São Paulo, Santos Livraria Editora.

  • Schneider, L., Belger, L., Burger, J., & Vogt, R. C. (2009). Mercury bioacumulation in four tissues of Podocnemis erythrocephala (Podocnemididae: Testudines) as a function of water parameters. Science of the total environment, 407:  1048-1054.

  • Schneider, L., Belger, L., Burger, J., Vogt, R. C., & Ferrara, C. R. (2010). Mercury levels in muscle of six species of turtles eaten by people along the Rio Negro of the Amazon basin. Archives of environmental contamination and toxicology, 58: 444-450.

  • Schneider, L., Belger, L., Burger, J., Vogt, R. C., Jeitner, C., & Peleja, J. R. P. (2011). Assessment of non-invasive techniques for monitoring mercury concentrations in species of Amazon turtles. Toxicological & Environmental Chemistry, 93(2), 238–250.

    Article  CAS  Google Scholar 

  • Schneider, L., Peleja, R. P., Kluczkovski, A., Freire, G. M., Marioni, B., Vogt, R. C., & Da Silveira, R. (2012). Mercury concentration in the spectacled caiman and black caiman (Alligatoridae) of the Amazon: implications for human health. Archives of environmental contamination and toxicology, 63: 270-279.

  • Schneider, L., Eggins, S., Maher, W., Vogt, R. C., Krikowa, F., Kinsley, L., Eggins, S., & Da Silveira, R. (2015). An evaluation of the use of reptile dermal scutes as a non-invasive method to monitor mercury concentrations in the environment. Chemosphere, 119, 163–170.

    Article  CAS  Google Scholar 

  • Schneider, L., Maher, W., Green, A., & Vogt, R. C. (2013). Mercury contamination in reptiles: an emerging problem with consequences for wild life and human health. Mercury: Sources, Applications and Health Impacts. Nova Science Publishers, Inc., Hauppauge, New York, USA, 173–232.

  • Schwartz, J. H., & Flamenbaum, W. (1976). Heavy metal-induced alterations in ion transport by turtle urinary bladder. American Journal of Physiology-Legacy Content, 230(6), 1582–1589.

    Article  CAS  Google Scholar 

  • Seltzer, M. D., Lance, V. A. & Elsey, R. M. (2006). Laser ablation ICP–MS analysis of the radial distribution of lead in the femur of Alligator mississippiensis. Science of the total environment, 363, 245-252.

  • Sherwood, N., Wu, M., & Weis, P. (2018). Mercury Contamination in Diamondback Terrapins in New Jersey. Environmental management, 62: 756-765.

  • Smith, D. L., Cooper, M. J., Kosiara, J. M., & Lamberti, G. A. (2016). Body burdens of heavy metals in Lake Michigan wetland turtles. Environmental monitoring and assessment, 188: 128.

  • Sorensen, E. M. (1991). Metal poisoning in fish. CRC Press.

    Google Scholar 

  • Sousa, R., Campos, N., & Orlando, R. (2015). Preparação de amostras para análise elementar. Apostila do programa de pós-graduação em química química analítica avançada da Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora.

  • Souza-Araujo, J., Giarrizzo, T., & Lima, M. O. (2015). Mercury concentration in different tissues of Podocnemis unifilis (Troschel, 1848)(Podocnemididae: Testudines) from the lower Xingu River–Amazonian, Brazil. Brazilian Journal of Biology, 75, 106-111.

  • Srogi, K. (2008). Developments in the determination of trace elements by atomic spectroscopic techniques. Analytical Letters, 41(5), 677–724.

    Article  CAS  Google Scholar 

  • Stoneburner, D. L. & Kushlan, J. A. (1984). Heavy metal burdens in American crocodile eggs from Florida Bay, Florida, USA. Journal of herpetology, 18, 192-193.

  • Swartz, M. E., & Krull, I. S. (Eds.). (2018). Analytical method development and validation. CRC press.

  • Tellez, M., & Merchant, M. (2015). Biomonitoring heavy metal pollution using an aquatic apex predator, the American alligator, and its parasites. PLoS One, 10(11), e0142522.

  • Trillanes, C. E., Pérez-Jiménez, J. C., Rosíles-Martínez, R., & González-Jáuregui, M. (2014). Metals in the caudal scutes of Morelet’s crocodile (Crocodylus moreletii) from the southern Gulf of Mexico. Bulletin of environmental contamination and toxicology, 93: 423-428.

  • Tryfonas, A. E., Tucker, J. K., Brunkow, P. E., Johnson, K. A., Hussein, H. S., & Lin, Z. Q. (2006). Metal accumulation in eggs of the red-eared slider (Trachemys scripta elegans) in the Lower Illinois River. Chemosphere, 63: 39-48.

  • Tuberville, T. D., Scott, D. E., Metts, B. S., Finger Jr, J. W., & Hamilton, M. T. (2016). Hepatic and renal trace element concentrations in American alligators (Alligator mississippiensis) following chronic dietary exposure to coal fly ash contaminated prey. Environmental Pollution214: 680-689.

  • Van Dyke, J. U., Jachowski, C. M. B., Steen, D. A., Jackson, B. P., & Hopkins, W. A. (2017). Spatial differences in trace element bioaccumulation in turtles exposed to a partially remediated coal fly ash spill. Environmental Toxicology and Chemistry, 36(1), 201–211.

    Article  CAS  Google Scholar 

  • Van Dyke, J. U., Steen, D. A., Jackson, B. P., & Hopkins, W. A. (2014). Maternal transfer and embryonic assimilation of trace elements in freshwater turtles after remediation of a coal fly-ash spill. Environmental pollution, 194: 38-49.

  • Vanz, A., Mirlean, N., & Baisch, P. (2003). Avaliação de poluição do ar por chumbo particulado: Uma abordagem geoquímica. Química Nova, 26(1), 25–29.

    Article  CAS  Google Scholar 

  • Verdade, L. M., & Piña, C. I. (2007). O jacaré-de-papo-amarelo (Caiman latirostris Daudin, 1802). Herpetología No Brasil, 2, 295–307.

    Google Scholar 

  • Viarengo, A. (1989). Heavy metals in marine invertebrates: Mechanisms of regulation and toxicity at the cellular level. Reviews in Aquatic Sciences, 1(2), 295–317.

    CAS  Google Scholar 

  • Vieira, L. M., Nunes, V. D. S., Amaral, M. D. A., Oliveira, A. C., Hauser-Davis, R. A., & Campos, R. C. (2011). Mercury and methyl mercury ratios in caimans (Caiman crocodilus yacare) from the Pantanal area Brazil. Journal of Environmental Monitoring, 13(2), 280–287.

    Article  CAS  Google Scholar 

  • Warner, J. K., Combrink, X., Myburgh, J. G., & Downs, C. T. (2016). Blood lead concentrations in free-ranging Nile crocodiles (Crocodylus niloticus) from South Africa. Ecotoxicology, 25(5), 950–958.

    Article  CAS  Google Scholar 

  • Welz, B. (1999). Atomic absorption spectrometry—pregnant again after 45 years. Spectrochimica Acta Part B: Atomic Spectroscopy, 54(14), 2081–2094.

    Article  Google Scholar 

  • Xu, Q., Fang, S., Wang, Z., & Wang, Z. (2006). Heavy metal distribution in tissues and eggs of Chinese alligator (Alligator sinensis). Archives of environmental contamination and toxicology, 50: 580-586.

  • Yadollahvand, R., Kami, H. G., Mashroofeh, A. & Bakhtiari, A. R. (2014). Assessment trace elements concentrations in tissues in Caspian Pond Turtle (Mauremys caspica) from Golestan province, Iran. Ecotoxicology and Environmental Safety, 101, 191-195.

  • Yanochko, G. M., Jagoe, C. H., & Brisbin, I. L., Jr. (1997). Tissue mercury concentrations in alligators (Alligator mississippiensis) from the Florida Everglades and the Savannah River Site, South Carolina. Archives of Environmental Contamination and Toxicology, 32(3), 323–328.

    Article  CAS  Google Scholar 

  • Yu, S., Halbrook, R. S., & Sparling, D. W. (2013). Correlation between heavy metals and turtle abundance in ponds near the Paducah Gaseous Diffusion Plant, Kentucky, USA. Archives of environmental contamination and toxicology, 65: 555-566.

  • Yu, S., Halbrook, R. S., Sparling, D. W., & Colombo, R. (2011). Metal accumulation and evaluation of effects in a freshwater turtle. Ecotoxicology, 20(8), 1801–1812.

    Article  CAS  Google Scholar 

  • Zhou, W., Juneau, P., & Qiu, B. (2006). Growth and photosynthetic responses of the bloom-forming cyanobacterium Microcystis aeruginosa to elevated levels of cadmium. Chemosphere, 65(10), 1738–1746.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rayssa Lima dos Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1 Description of species, elements, equipment and respective authors, separated by Order (Testudines and Crocodylia) from 1976 to 2020. List of abbreviations are at footnote

Species

Elements

Equipment

Author(s)

Year

Testudines

Trachemys scripta

Not reported

Not reported

Schwartz and Flamenbaum

1976

Trachemys scripta

Cd, Cr, Cu, Ni, Pb, Zn, Hg

AAS

Albers, Sileo and Mulhern

1986

Trachemys scripta

Pb, Hg, Cd, Se, Cr, Mn

SS-GF ASS and CV-AAS

Burger and Gibbons

1998

Trachemys scripta

Al, Cd, Cr, Cu, Mn, Ni, Pb, Va, Zn

ICP-AES

Tryfonas, et al.,

2006

Trachemys scripta

Pb

SS-GF AAS

Bisho,p et al.,

2010

Trachemys scripta

Cd, Cr, Cu, Pb, Hg

CV-AAS and SS-GF AAS

Yu, et al.,

2011

Trachemys scripta

Cd

ICP-MS

Guirlet, et al.,

2012

Trachemys scripta

Hg

SS-GF AAS and CV-AAS

Yu, et al.,

2013

Trachemys scripta

As, Se, Zn, Hg, Sr

ICP-MS

Van Dyke, et al.,

2014

Trachemys scripta

Se

ICP-MS

Dyc, et al.,

2016

Trachemys scripta

As, Ba, Cd, Cr, Cu, Fe, Mn, Hg, Se, Zn, Sr, Tl, Va

IDA

Van Dyke, et al.,,

2017

Chelydra serpentina

Hg, Cd

not reported

Helwig & Hora,

1983

Chelydra serpentina

Cd, Cr, Cu, Ni, Pb, Zn, Hg

AAS

Albers, Sileo & Mulhern,

1986

Chelydra serpentina

Sr, Co and Hg

CV-AAS

Linda Meyers-Schone, et al.,

1993

Chelydra serpentina

Cd, Cr, Cu, Fe, Pb, Mg, Mn and Zn

ICP-AES

Smith, et al.,

2016

Chelydra serpentina

As, Ba, Cd, Cr, Cu, Fe, Mn, Hg, Se, Zn, Sr, Tl, Va

IDA

Van Dyke, et al.,

2017

Apalone spinifera

As, Ba, Cd, Cr, Cu, Fe, Mn, Hg, Se, Zn, Sr, Tl, Va

IDA

Van Dyke, et al.,

2017

Aspideretes gangeticus

Cd, Co, Cr,Cu, Fe, Mn, Ni, Pb, Zn

AAS

Malik, et al.,

2013

Chelus fimbriatus

Hg

CV-AAS

Schneider, et al.,

2009

Chelus fimbriatus

As, Cd, Cr, Pb, Hg and Se

not reported

Burger, et al.,

2009

Chelus fimbriatus

Hg

CV-AAS

Schneider, et al.,

2010

Chrysemys picta

Cd

ICP-MS

Rie, Lendas & Callard,

2001

Chrysemys picta

Cd

not reported

Kitana & Callard,

2008

Chrysemys picta

Cd, Cr, Cu, Fe, Pb, Mg, Mn and Zn

ICP-AES

Smith, et al.,

2016

Cuora amboinensis

Hg

DMA 80

Green, et al.,

2010

Emys orbicularis

Zn, Pb, Cu, Cd

ASS and ICP-MS

Namroodi,, et al.,

2017

Emys orbicularis

Zn, Ag, Cd, Hg, Pb, As, Co, Cr, Cu, Fe, Mn, Ni, Se, Va

ICP-MS, SS-GF-AAS and HG-AAS

Guillot, et al.,

2018

Heosemys spinosa

Hg

DMA 80

Green, et al.,

2010

Kachuga smithi

Cu, Zn, Ni, Cd, Co, Pb, Cr

AAS

Nisa, et al.,

2015

Kachuga smithi

Cu, Zn, Ni, Cd, Cr, Co, Pb

FAAS

Nisa, et al.,

2019

Kachuga tecta

Cu, Zn, Ni, Cd, Co, Pb, Cr

ASS

Nisa, et al.,

2015

Kachuga tecta

Cu, Zn, Ni, Cd, Cr, Co, Pb

FAAS

Nisa, et al.,

2019

Lissemys punctata

Cu, Zn, Ni, Cd, Co, Pb, Cr

FAAS

Nisa, et al.,

2015

Lissemys punctata

Cu, Zn, Ni, Cd, Cr, Co, Pb

ASS

Nisa, et al.,

2019

Macroclemys temminckii

Cr, Cd and Pb

ICP-AES

Dupre, et al.,

2018

Macroclemys temminckii

Pb, Zn and Hg

SS-GF-AAS and CV-AAS

DiGeronimo,

2018

Malaclemys terrapin

Hg

CV-AAS

Sherwood, et al.,

2018

Malaclemys terrapin

Zn, Hg and Pb

SS-GF AAS and CV-AAS

DiGeronimo,

2018

Mauremys reevesii

Cd

not reported

Huo, et al.,

2020

Mauremys caspica

Zn, Pb, Cu, Cd

AAS

Yadollahvand, et al.,

2014

Mauremys caspica

Hg, Pb and Cd

SS-GF AAS and CV-AAS

Adel, et al.,

2017

Mauremys leprosa

Hg, Pb, Cu, Zn and Cd

CV AAS and ASV

Martínez-López, et al.,

2017

Mauremys leprosa

Pb and Hg

FAAS

Ortiz-Santaliestra, et al.,

2019

Podocnemis dumerilianus

Hg

CV-AAS

Schneider, et al.,

2009

Podocnemis dumerilianus

As, Cd, Cr, Pb, Hg and Se

not reported

Burger, et al.,

2009

Podocnemis dumerilianus

Hg

CV-AAS

Schneider, et al.,

2010

Podocnemis erythrocephala

Hg

CV-AAS

Schneider, et al.,

2009

Podocnemis erythrocephala

As, Cd, Cr, Pb, Hg and Se

not reported

Burger, et al.,

2009

Podocnemis erythrocephala

Hg

CV-AAS

Schneider, et al.,

2010

Podocnemis expansa

Hg

CV-AAS

Schneider, et al.,

2009

Podocnemis expansa

As, Cd, Cr, Pb, Hg and Se

not reported

Burger, et al.,

2009

Podocnemis expansa

Hg

CV-AAS

Schneider, et al.,

2010

Podocnemis expansa

Hg [CH3Hg]+

ICP-MS

Eggins, et al.,

2015

Podocnemis expansa

Hg

CV-AAS

Souza-Araujo, Giarrizzo & Lima,

2015

Podocnemis sextuberculata

Hg

CV-AAS

Schneider, et al.,

2009

Podocnemis sextuberculata

As, Cd, Cr, Pb, Hg and Se

not reported

Burger, et al.,

2009

Podocnemis sextuberculata

Hg

CV-AAS

Schneider, et al.,

2010

Podocnemis unifilis

Hg

CV-AAS

Schneider, et al.,

2009

Podocnemis unifilis

As, Cd, Cr, Pb, Hg and Se

not reported

Burger, et al.,

2009

Podocnemis unifilis

Hg

CV-AAS

Schneider, et al.,

2010

Podocnemis unifilis

Hg [CH3Hg]+

ICP-MS

Eggins, et al.,

2015

Podocnemis unifilis

Hg

CV-AAS

Souza-Araujo, Giarrizzo & Lima,

2015

Pseudemys rubriventri

Pb

SS-GF-AAS

Bishop, et al.,

2010

Siebenrockiella crassicollis

Hg

DMA 80

Green, et al.,

2010

Sternotherus odoratus

Hg

SS-GF-AAS and CV-AAS

Yu, et al.,

2013

Sternotherus odoratus

As, Se, Zn, Hg, Sr

ICP-MS

Vand Dyke, et al.,

2014

Sternotherus odoratus

As, Ba, Cd, Cr, Cu, Fe, Mn, Hg, Se, Zn, Sr, Tl, Va

IDA

Vand Dyke, et al.,

2017

Terrapene carolina carolina

Pb, As, Zn, Cr, Se, Cu, Cd and Ag

ICP-MS

Allender,, et al.,

2015

Trachemys callirostris

Hg

CV-AAS

Rendón-Valencia, et al.,

2014

Trachemys callirostris

Hg

DMA 80

Meza-Martínez, et al.,

2020

Trionyx triunguis

Cr, Cd, Cu, Fe, Ni and Pb

FAAS

Gidis & Kaska,

2004

Crocodylia

Alligator mississipiensis

Cu, Zn, Fe, Cr, Hg, Pb, As and Pt

AAS and SS-GF-AAS

Delany, Bell & Sundlof,

1988

Alligator mississipiensis

Al, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Mo, Ni Se, Ta and Va

ICP

Heinz, Percival & Jennings,

1991

Alligator mississipiensis

Hg

CV-AAS

Ruckel,

1993

Alligator mississipiensis

Hg

CV-AAS

Heaton-Jones, et al.,

1997

Alligator mississipiensis

Hg

CV-AAS and gold leaf amalgam with conductivity detection

Yanochko, Jagoe & Brisbin,

1997

Alligator mississipiensis

Hg

CV-AAS

Jago, et al.,

1998

Alligator mississipiensis

Pb

SS-GF-AAS

Camus, et al.,

1998

Alligator mississipiensis

As, Cd, Cr, Pb, Mn, Hg and Se

CV-AAS

Burger, et al.,

2000

Alligator mississipiensis

Hg

not reported

Khan & Tansel,

2000

Alligator mississipiensis

Hg

AAS

Rumbold, et al.,

2002

Alligator mississipiensis

Se

ICP-MS

Roe, et al.,

2004

Alligator mississipiensis

Pb, Cd and Se

SS-GF-AAS

Lance, et al.,

2006

Alligator mississipiensis

Pb

ICP-AES

Seltzer, et al.,

2006

Alligator mississipiensis

Cd, Co, Cr, Ni, Pb, As, Hg and Se

ICP and PSA

Campbell, et al.,

2010

Alligator mississipiensis

Cd, Cu, Fe, Pb and Zn

ICP-AES

Guillory, et al.,

2011

Alligator mississipiensis

Li, Mg, Al, Va, Cr, Mn, Fe, Co, Ni, Cu, Zn, GaAs, Se, S, Sr, Mo, Ag, In, Sn, Sb, Cs, Tl, Hg, Pb and Bi

ICP and CV-AAS

Horai, et al.,

2014

Alligator mississipiensis

As, Cd, Cu, Fe, Pb, Se and Zn

ICP-AES

Tellez et al.,

2015

Alligator mississipiensis

Hg, Al, Va, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Pb, Sn

ICP-MS

Nilsen, et al.,

2016

Alligator mississipiensis

As, Cd, Cr, Cu and Se

ICP-MS

Tuberville, et al.,

2016

Alligator mississipiensis

Al, Va, Cr, Mn, Co, Ni, Zn, As, Se, Rb, Sr, Mo, Cd, Sn, Cd and Pb

ICP-MS

Nilsen, et al.,

2017

Alligator mississipiensis

Hg

DMA

Nilsen, et al.,

2017

Alligator mississipiensis

Hg

DMA

Lawson, et al.,

2020

Alligator mississipiensis

Al, Cu, Zn, Mo, Se, As, Cd, Pb and Hg

ICP-MS

Nilsen, et al.,

2019

Alligator mississipiensis

Hg

DMA

Nilsen, et al.,

2020

Alligator sinensis

As, Fe, Mn, Cu, Pb, Cd, Cr, Zn and Hg

CV-AAS

Xu, et al.,

2006

Caiman crocodilus

Hg

CV-AAS

Schneider, et al.,

2012

Caiman crocodilus

Hg

ICP-MS

Schneider, et al.,

2015

Caiman crocodilus

Hg

DMA

Marrugo-Negrete, et al.,

2019

Crocodylus acutus

Al, Cd, Co, Cu, Pb, Mo and Sr

ICP

Stoneburner & Kushlan,

1984

Crocodylus acutus

Cd, Cu, Pb, Hg, Zn and As

ICP-AES

Rainwater, et al.,

2007

Crocodylus moreletii

Hg

CV-AAS

Rainwate, et al.,

2002

Crocodylus moreletii

Cd, Cu, Pb, Hg, Zn and As

ICP-AES

Rainwater, et al.,

2007

Crocodylus moreletii

As, Hg, Pb, Ni, Cd, Cr

FAAS and HG-AAS

Trillanes et al

2014

Crocodylus moreletii

Hg and Cd

SS-GF-AAS

Buenfil-Rojas, et al.,

2015

Crocodylus moreletii

Hg

AAS

Buenfil-Rojas, et al.,

2018

Crocodylus moreletii

Cd, Cr and Pb

FAAS

Cedillo-Leal, et al.,

2018

Crocodylus moreletii

Hg, Cd, Cu and Zn

VEQ and HG-AAS

Buenfil-Rojas, et al.,

2020

Crocodylus niloticus

Cd, Co, Mn, Mo, Pb, As, Hg, Se, Co and Zn

FAAS and SS-GF-AAS

Almli,, et al.,

2005

Crocodylus niloticus

Cr, Cd, Zn, Ti, Hg, Pt, Au, Ag, Pb, Ni, Mn and U

ICP-AES

Du Preez, et al.,

2016

Crocodylus niloticus

Pb

SS-GF-AAS

Warner, et al.,

2016

Crocodylus niloticus

Al, Cu, Hg, Cr, Ni, Co, Cd, Zn, Se, As, Mn, Fe, Ba, Va, Pt, Au, Ag and Ti

not reported

Du Preez, et al.,

2018

Crocodylus porosus

Na, K, Ca, Mg, Sr, Fe, Al, Mn, Zn, Pb, Cu, Ni, Cr, Co, Se, U and Tl

ICP

Jeffree, Markich & Twining,

2001

Crocodylus porosus

Ba, Al, Ca, Cd, Cr, Fe, H, K, Mg, Mn, Na, Ni, P, Pb, S, Se, Sr, Zn and Sn

ICP-MS

Manolis, et al.,

2002

Crocodylus porosus

Pb

ICP-MS

Hammerton, Jayasinghe & Lim,

2003

Crocodylus porosus

Ba, Cd, Co, Cu, Mn, Ni, Pb, U, Zn, As, Cr, Hg, Mo, Sb, Se, Ta and Sn

ICP

Jeffree, et al.,

2005

Melanosuchus niger

Hg

CV-AAS

Schneider, et al.,

2012

Melanosuchus niger

Hg

not reported

Correia, et al.,

2014

Melanosuchus niger

Hg [CH3Hg] + 

ICP-MS

Eggins,, et al.,

2015

Melanosuchus niger

Hg

ICP-MS

Schneider, et al..,

2015

Caiman latirostris

As and Pb

AAS

Quintela, et al.,

2019

  1. ICP atomic emission spectroscopy, AAS atomic absorption spectroscopy, DMA direct mercury analyser, IDA isotope dilution analysis, ASV anodic stripping voltammetry, VEQ voltamperometer with suspended mercury drop electrode, ICP-MS atomic emission spectrometry plasma-source mass, ICP-AES atomic emission spectrometry inductively coupled plasma, CV-AAS atomic absorption spectroscopy could vapour, SS-GF-AAS atomic absorption spectroscopy graphite furnace, FAAS atomic absorption spectroscopy flame, HG-AAS atomic absorption spectroscopy hydride generation

Appendix 2 Part of the studies that analysed concentrations of cadmium, lead and mercury in blood, keratin, muscle and/or liver samples analysed by the articles in this review. The concentrations presented may not represent all samples from the selected articles, due to the large amount of information and elements analysed by the authors (median ± SD) (ww/dw) (ND not detected)

Year

Author (s)

Element(s)

Specie

Element

Sample

Unit

    

Cadmium

Wet weight

mg g-1

1986

Albers, Sileo & Mulhern

  

Cd, Cr, Cu, Ni, Pb, Zn, Hg

 

Trachemys scripta

 

Lead

    

Mercury

    

Cadmium

Wet weight

ng g-1

2009

Burger, et al.,

As, Cd, Cr, Pb, Hg and Se

Chelus fimbriatus

Lead

    

Mercury

2018

Guillot,  et al.,

Zn, Ag, Cd, Hg, Pb, As, Co, Cr, Cu, Fe, Mn, Ni, Se, Va

Emys orbicularis

Cadmium

Dry weight

µg g-1

Lead

Mercury

    

Cadmium

Dry weight

mg kg-1

2017

Adel, et al.,

Hg, Pb and Cd

Mauremys caspica

Lead

    

Mercury

    

Cadmium

Wet weight

µg dL-1

2017

 Martínez-López, et al.,

Hg, Pb, Cu, Zn and Cd

Mauremys leprosa

Lead

    

Mercury

  

As, Cd, Cr, Pb, Mn, Hg and Se

 

Cadmium

Wet weight

ppb

2000

Burger, et al.,

Alligator mississipiensis

Lead

   

Mercury

  

Cd, Co, Cr, Ni, Pb, As, Hg and Se

 

Cadmium

 

µg g-1

2010

Campbell, et al.,

Alligator mississipiensis

Lead

Not reported

   

Mercury

 
   

Alligator mississipiensis

Cadmium

Wet weight

ng g-1

2019

Nilsen, et al.,

Al, Cu, Zn, Mo, Se, As, Cd, Pb and Hg

Lead

   

Mercury

  

As, Fe, Mn, Cu, Pb, Cd, Cr, Zn and Hg

 

Cadmium

Dry weight

µg g-1

2006

Xu, et al.,

Alligator sinensis

Lead

   

Mercury

    

Cadmium

Dry weight

ng g-1

2014

Trillanes, et al.,

As, Hg, Pb, Ni, Cd, Cr

Crocodylus moreletii

Lead

    

Mercury

  

Cd, Co, Mn, Mo, Pb, As, Hg, Se, Co and Zn

 

Cadmium

Wet weight

µg g-1

2005

Almli, et al.,

Crocodylus niloticus

Lead

   

Mercury

    

Cr, Cd, Zn, Ti, Hg, Pt, Au, Ag, Pb, Ni, Mn and U

 

Cadmium

Dry weight

mg kg-1

2016

Preez ,et al.,

  

Crocodylus niloticus

Lead

   

Mercury

Concentration (s)

Males

Female

Gender not defined

Blood

Muscle

keratin

Live

Blood

Muscle

Keratin

Liver

Blood

Muscl

Keratin

Liver

0.10 ± 0.06

0.08 ± 0.05

ND

ND

   

1.28 ± 0.79

   

1.27 ± 0.34

0.05 ± 0.04

0.01 ± 0

25.7 ± 4.24

26.6 ± 4.87

1.47 ± 0.35

1.81 ± 0.35

0.015 ± 0.012

0.21 ± 0.19

0.74 ± 2.51

0.662 ± 0.375

1.128 ± 1.077

2.10 ± 0.10

4.29 ± 0.19

2.29 ± 0.19

4.82 ± 2.82

23.82 ± 1.12

35.46 ± 1.90

22.12 ± 1.57

35.34 ± 2.05

1.63 ± 0.11

2.70 ± 0.13

1.66 ± 0.14

2.78 ± 0.18

0.23 ± 0.30

0.05 ± 0.08

10.53 ± 6.59

7.33 ± 7.82

1.00 ± 0.50

0.44 ± 0.38

62.8 ± 618.6

123 ± 19.2

40.8 ± 9.3

27.7 ± 4.76

403 ± 80.1

62.5 ± 16.5

0.562 ± 0.20

0.389 ± 0.12

5.52 ± 2.2

11.7 ± 7.8

7.32 ± 2.4

3.44 ± 0.82

1.1 ± 0.4

464 ± 1308

1364 ± 673

0.201

0.53

0.109

-

0.275

0.71

0.85

0.75

-

0.54

0.105

0.492

0.281

-

0.626

ND

64.8 ± 57.8b

4.3 ± 2.7

0.04

3.3

3.7

0.0079

0.1

2.8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, R.L., de Sousa Correia, J.M. & dos Santos, E.M. Freshwater aquatic reptiles (Testudines and Crocodylia) as biomonitor models in assessing environmental contamination by inorganic elements and the main analytical techniques used: a review. Environ Monit Assess 193, 498 (2021). https://doi.org/10.1007/s10661-021-09212-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09212-w

Keywords

Navigation