Skip to main content

Advertisement

Log in

Insight into the precipitation behavior of gridded precipitation data in the Sina basin

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper examines the performance of three gridded precipitation data sets, namely, Global Precipitation Climatology Centre (GPCC), Tropical Precipitation Measuring Mission (TRMM), and the Modern-Era Retrospective Analysis for Research and Applications (MERRA), for the duration of 25 years using 9 rain gauge data sets of the Sina basin, India. Statistical measures were employed to measure the performance in reproducing the rainfall and to assess its ability to detect the rainfall/no rainfall events, its structure, pattern, and spatio-temporal variations in the monthly and annual time scales. Compromise programming (CP) is used to rank the statistical performances of selected gridded precipitation data sets and found that TRMM attained first rank for the 8 stations followed by MERRA. The precipitation concentration index (PCI) checks the pattern and distribution of rainfall and found that observed data shows a uniform distribution in the basin; however, all the three gridded data sets failed to demonstrate uniform distribution. Categorical metrics like Probability of Detection (POD) and False Alarm Ratio (FAR) revealed that TRMM followed by MERRA and GPCC have good capabilities to detect rainfall/no rainfall events at different thresholds. All the trends drawn between observed data set and gridded precipitation data sets revealed that the MERRA data tend to underestimate and the TRMM and GPCC data tend to overestimate the values and intensities of rainfall data sets at most of the stations for both monthly and annual time scales. The data analysis of extreme rainfall points at monthly and annual time scales exhibits better performance of TRMM data sets. Overall, the TRMM data set is capable in replicating different characteristics of the observed data in the study area and could be used for hydro-meteorological and climatic studies when continuous observed data set is not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmed, K., Shahid, S., & Harun, S. B. (2014). Spatial interpolation of climatic variables in a predominantly arid region with complex topography. Environment Systems and Decisions, 34(4), 555–563.

    Article  Google Scholar 

  • Ahmed, K., Shahid, S., Harun, S. b., & Wang, X. j. (2016). Characterization of seasonal droughts in Balochistan Province, Pakistan. Stochastic Environmental Research and Risk Assessment, 30(2), 747–762.

    Article  Google Scholar 

  • Azpurua, M. A., & Ramos, K. D. (2010). A comparison of spatial interpolation methods for estimation of average electromagnetic field magnitude. Progress In Electromagnetics Research, 14, 135–145. https://doi.org/10.2528/PIERM10083103.

    Article  Google Scholar 

  • Babaousmail, H., Hou, R., Ayugi, B., & Gnitou, G. T. (2019). Evaluation of satellite-based precipitation estimates over Algeria during 1998–2016. Journal of Atmospheric and Solar-Terrestrial Physics, 195(October), 105139.

    Article  Google Scholar 

  • Beharry, S. L., Clarke, R. M., & Kurmarsingh, K. (2014). Precipitation trends using in-situ and gridded data sets. Theoretical and Applied Climatology, 115(3–4), 599–607.

    Article  Google Scholar 

  • Beven, K., & Westerberg, I. (2011). On red herrings and real herrings: Disinformation and information in hydrological inference. Hydrological Processes, 25(10), 1676–1680.

    Article  Google Scholar 

  • Chauncheng, Z., Shuxia Y., Jun, L., Zhiguo, R., & Wenjiao D. (2016). Accuracy assessment of tropical rainfall measuring mission (TRMM) satellite product over tianshan mountainous, northwest of china. International Proceedings of Chemical, Biological and Environmental Engineering 94(1). https://doi.org/10.7763/IPCBEE.2016.V94.1.

  • Chen, F.W., & Liu, C.W. (2012). Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of taiwan. Paddy and Water Environment 10(3):209–22. https://doi.org/10.1007/s10333-012-0319-1.

    Article  Google Scholar 

  • Choubin, B., Alamdarloo, E. H., Mosavi, A., Hosseini, F. S., Ahmad, S., Goodarzi, M., & Shamshirband, S. (2019a). Spatiotemporal dynamics assessment of snow cover to infer snowline elevation mobility in the mountainous regions. Cold Regions Science and Technology, 167(August), 102870.

    Article  Google Scholar 

  • Choubin, B., Khalighi-Sigaroodi, S., Mishra, A., Goodarzi, M., Shamshirband, S., Ghaljaee, E., & Zhang, F. (2019b). A novel bias correction framework of TMPA 3B42 daily precipitation data using similarity matrix/homogeneous conditions. Science of the Total Environment, 694, 133680.

    Article  CAS  Google Scholar 

  • Criss, R. E., & Winston, W. E. (2008). Do Nash values have value? Discussion and alternate proposals. Hydrological Processes, 22, 2723–2725.

    Article  Google Scholar 

  • Feng, X., Porporato, A., & Rodriguez-Iturbe, I. (2013). Changes in rainfall seasonality in the tropics. Nature Climate Change, 3(9), 811–815.

    Article  Google Scholar 

  • Gao, Y. C., & Liu, M. F. (2013). Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan plateau. Hydrology and Earth System Sciences, 17(2), 837–849.

    Article  Google Scholar 

  • Goswami, B. N., Ajaya Mohan, R. S., Goswami, B. N., & Ajaya Mohan, R. S. (2001). Intraseasonal oscillations and interannual variability of the Indian summer monsoon. https://doi.org/10.1175/1520-0442(2001)014<1180:IOAIVO>2.0.CO;2.

  • Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4), 182–196.

    Article  Google Scholar 

  • Huang, J., Zhang, J., Zhang, Z., & Chong Yu, X. (2013). Spatial and temporal variations in rainfall erosivity during 1960-2005 in the Yangtze River basin. Stochastic Environmental Research and Risk Assessment, 27(2), 337–351.

    Article  Google Scholar 

  • Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Guojun, G., Yang, H., Bowman, K. P., & Stocker, E. F. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38–55.

    Article  Google Scholar 

  • Hussain, S., Song, X., Ren, G., Hussain, I., Han, D., & Zaman, M. H. (2017). Evaluation of gridded precipitation data in the Hindu Kush–Karakoram–Himalaya mountainous area. Hydrological Sciences Journal, 62(14), 2393–2405.

    Article  Google Scholar 

  • Irannezhad, M., Marttila, H., & Kløve, B. (2014). Long-term variations and trends in precipitation in Finland. International Journal of Climatology, 34(10), 3139–3153.

    Article  Google Scholar 

  • Johnston, K. (2004). ArcGIS 9: using ArcGIS geostatistical analyst. Esri Press.

  • Jury, M. R. (2014). Malawi’s Shire River fluctuations and climate. Journal of Hydrometeorology, 15(5), 2039–2049.

    Article  Google Scholar 

  • Katiraie-Boroujerdy, P. S., Nasrollahi, N., Hsu, K. l., & Sorooshian, S. (2016). Quantifying the reliability of four global datasets for drought monitoring over a semiarid region. Theoretical and Applied Climatology, 123(1–2), 387–398.

    Article  Google Scholar 

  • Kidd, C., Bauer, P., Turk, J., Huffman, G. J., Joyce, R., Hsu, K. L., & Braithwaite, D. (2012). Intercomparison of high-resolution precipitation products over Northwest Europe. Journal of Hydrometeorology, 13(1), 67–83.

    Article  Google Scholar 

  • Kumar, S., Roshni, T., Kahya, E., & Ghorbani, M. A. (2020). Climate change projections of rainfall and its impact on the cropland suitability for Rice and wheat crops in the Sone River command, Bihar. Theoretical and Applied Climatology, 142, 433–451. https://doi.org/10.1007/s00704-020-03319-9.

    Article  Google Scholar 

  • Li, D., Christakos, G., Ding, X., & Jiaping, W. (2018). Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi catchment (Taihu Lake Basin, China). Journal of Hydrology, 556, 1139–1152.

    Article  Google Scholar 

  • Lu, G. Y., & David W. W. (2008). An adaptive inverse-distance weighting spatial interpolation technique. Computers and Geosciences 34(9):1044–55. https://doi.org/10.1016/j.cageo.2007.07.010.

    Article  Google Scholar 

  • Maliki, A. A. A., Abbass, Z. D., Hussain, H. M., & Al-Ansari, N. (2020). Assessment of the groundwater suitability for irrigation near Al Kufa City and preparing the final water quality maps using spatial distribution tools. Environmental Earth Sciences, 79, 330–342. https://doi.org/10.1007/s12665-020-09060-w.

    Article  CAS  Google Scholar 

  • Mullan, D., Chen, J., & Zhang, X. J. (2016). Validation of non-stationary precipitation series for site-specific impact assessment: Comparison of two statistical downscaling techniques. Climate Dynamics, 46(3–4), 967–986.

    Article  Google Scholar 

  • Nair, S., Srinivasan, G., & Nemani, R. (2009). Evaluation of multi-satellite TRMM derived rainfall estimates over a Western state of India. Journal of the Meteorological Society of Japan, 87(6), 927–939.

    Article  Google Scholar 

  • Nastos, P. T., Kapsomenakis, J., & Philandras, K. M. (2016). Evaluation of the TRMM 3B43 gridded precipitation estimates over Greece. Atmospheric Research, 169, 497–514.

    Article  Google Scholar 

  • Navale, A., Singh, C., Budakoti, S., & Singh, S. K. (2020). Evaluation of season long rainfall simulated by WRF over the NWH region: KF vs. MSKF. Atmospheric Research, 232(September 2019), 104682.

    Article  Google Scholar 

  • Nijssen, B., & Lettenmaier, D. P. (2004). Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the global precipitation measurement satellites. Journal of Geophysical Research, D: Atmospheres, 109(2), 1–15.

    Google Scholar 

  • Oliver, J. E. (1980). Monthly precipitation distribution: A comparative index. The Professional Geographer, 32(3), 300–309.

    Article  Google Scholar 

  • Perkins, S. E., Pitman, A. J., & Sisson, S. A. (2013). Systematic differences in future 20 year temperature extremes in AR4 model projections over Australia as a function of model skill. International Journal of Climatology, 33(5), 1153–1167.

    Article  Google Scholar 

  • Pirnia, A., Darabi, H., Choubin, B., Omidvar, E., Onyutha, C., & Haghighi, A. T. (2019). Contribution of climatic variability and human activities to stream flow changes in the Haraz River basin, northern Iran. Journal of Hydro-Environment Research, 25(April), 12–24.

    Article  Google Scholar 

  • Pour, S. H., Shahid, S., Chung, E. S., & Wang, X. J. (2018). Model output statistics downscaling using support vector machine for the projection of spatial and temporal changes in rainfall of Bangladesh. Atmospheric Research, 213, 149–162.

    Article  Google Scholar 

  • Prakash, S., Mahesh, C., Gairola, R. M., & Pal, P. K. (2012). Comparison of high-resolution TRMM-based precipitation products during tropical cyclones in the North Indian Ocean. Natural Hazards, 61(2), 689–701.

    Article  Google Scholar 

  • Prakash, S., Sathiyamoorthy, V., Mahesh, C., & Gairola, R. M. (2014). An evaluation of high-resolution multisatellite rainfall products over the Indian monsoon region. International Journal of Remote Sensing, 35(9), 3018–3035.

    Article  Google Scholar 

  • Rahman, S. H., Sengupta, D., & Ravichandran, M. (2009). Variability of Indian summer monsoon rainfall in daily data from gauge and satellite. Journal of Geophysical Research-Atmospheres, 114(17).

  • Raju, K. S., & Kumar, D. N. (2014). Ranking of global climate models for India using multicriterion analysis. Climate Research, 60(2), 103–117.

    Article  Google Scholar 

  • Raziei, T., Martins, D. S., Bordi, I., Santos, J. F., Portela, M. M., Pereira, L. S., & Sutera, A. (2015). SPI modes of drought spatial and temporal variability in Portugal: Comparing observations, PT02 and GPCC gridded datasets. Water Resources Management, 29(2), 487–504.

    Article  Google Scholar 

  • Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G. K., Bloom, S., Chen, J., Collins, D., Conaty, A., Da Silva, A., Wei, G., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., & Woollen, J. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24(14), 3624–3648.

    Article  Google Scholar 

  • Roshni, T., Choudhary S., Jha M. K., & Mandal, N. (2020). Probability-based approach for evaluating groundwater risk assessment in Sina Basin, India. Handbook of Probabilistic Models. Edited by Pijush Samui, Ravinesh Deo, Dieu Bui, Subrata Chakraborty. 289-304. https://doi.org/10.1016/B978-0-12-816514-0.00012-6. Elsevier Inc.

  • Saber, M., & Yilmaz, K. K. (2018). Evaluation and bias correction of satellite-based rainfall estimates for modelling flash floods over the Mediterranean region: Application to Karpuz River basin, Turkey. Water (Switzerland), 10(5).

  • Salcedo, B. (2018). Documento Técnico NASA Produto 3B42. 甲状腺学会誌, 35(4), 290–291.

    Google Scholar 

  • Salman, S. A., Shahid, S., Ismail, T., Al-Abadi, A. M., Wang, X. j., & Chung, E. S. (2019). Selection of gridded precipitation data for Iraq using compromise programming. Measurement: Journal of the International Measurement Confederation, 132, 87–98.

    Article  Google Scholar 

  • Sapiano, M. R. P., & Arkin, P. A. (2009). An Intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. Journal of Hydrometeorology, 10(1), 149–166.

    Article  Google Scholar 

  • Schneider, U., Ziese, M., Becker, A., & Finger, P. (2015). Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre (GPCC) (May):1–14.

  • Shrestha, D., Singh, P., & Nakamura, K. (2012). Spatiotemporal variation of rainfall over the central Himalayan region revealed by TRMM precipitation radar. Journal of Geophysical Research-Atmospheres, 117(22), 1–14.

    Google Scholar 

  • Singh, P., & Kumar, N. (1997). Impact assessment of climate change on the hydrological response of a snow and glacier melt runoff dominated himalayan river. Journal of Hydrology 193(1–4):316–50. https://doi.org/10.1016/S0022-1694(96)03142-3.

    Article  Google Scholar 

  • Sorooshian, S., Aghakouchak, A., Arkin, P., Eylander, J., Foufoula-Georgiou, E., Harmon, R., Hendrickx, J. M. H., Imam, B., Kuligowski, R., Skahill, B., & Skofronick-Jackson, G. (2011). Advanced concepts on remote sensing of precipitation at multiple scales. Bulletin of the American Meteorological Society, 92(10), 1353–1357.

    Article  Google Scholar 

  • Tian, Y., Peters-Lidard, C. D., Choudhury, B. J., & Garcia, M. (2007). Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. Journal of Hydrometeorology, 8(6), 1165–1183.

    Article  Google Scholar 

  • Uma, R., Kumar, T. V. L., Narayanan, M. S., Rajeevan, M., Bhate, J., & Kumar, K. N. (2013). Large scale features and assessment of spatial scale correspondence between TMPA and IMD rainfall datasets over Indian landmass. Journal of Earth System Science, 122(3), 573–588.

    Article  Google Scholar 

  • Villarini, G., Krajewski, W. F., & Smith, J. A. (2009). New paradigm for statistical validation of satellite precipitation estimates: Application to a large sample of the TMPA 0.25° 3-hourly estimates over Oklahoma. Journal of Geophysical Research-Atmospheres, 114(12), 1–12.

    Google Scholar 

  • Wable, P. S., & Jha, M. K. (2018). Application of Archimedean copulas to the impact assessment of hydro-climatic variables in semi-arid aquifers of Western India. Hydrogeology Journal, 26(1), 89–108. https://doi.org/10.1007/s10040-017-1636-7.

    Article  Google Scholar 

  • Wable, P. S., Jha, M. K., & Shekhar, A. (2019). Comparison of drought indices in a semi-arid river basin of India. Water Resources Management, 33, 75–102. https://doi.org/10.1007/s11269-018-2089-z.

    Article  Google Scholar 

  • Wang, W., Shao, Q., Peng, S., Zhang, Z., Xing, W., An, G., & Yong, B. (2011). Spatial and temporal characteristics of changes in precipitation during 1957-2007 in the Haihe River basin, China. Stochastic Environmental Research and Risk Assessment, 25(7), 881–895.

    Article  CAS  Google Scholar 

  • Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11), 1309–1313.

    Article  Google Scholar 

  • Xue, X., Yang, H., Limaye, A. S., Gourley, J. J., Huffman, G. J., Khan, I., Dorji, C., & Chen, S. (2013). Statistical and hydrological evaluation of TRMM-based multi-satellite precipitation analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? Journal of Hydrology, 30, 91–99.

    Article  Google Scholar 

  • Zeleny, M. (2011). Multiple criteria decision making (MCDM): From paradigm lost to paradigm regained?*. Journal of Multi-Criteria Decision Analysis, 18(1–2), 77–89.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thankfully acknowledge the Ministry of Human Resource Department (MHRD) for the support and encouragement for this research. We thank the India Meteorological Department, Pune, for providing long-term gridded rainfall station data for research purposes. We are also very grateful to NASA GES DISC and NASA/Goddard Space Flight Center’s U.S for providing the TRMM and MERRA data. The authors are also grateful to the Editors and anonymous reviewers for their useful comments/suggestions that improved the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thendiyath Roshni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sireesha, C., Roshni, T. & Jha, M.K. Insight into the precipitation behavior of gridded precipitation data in the Sina basin. Environ Monit Assess 192, 729 (2020). https://doi.org/10.1007/s10661-020-08687-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08687-3

Keywords

Navigation