Influence of elevated river flow on hypoxia occurrence, nutrient concentration and microbial dynamics in a tropical estuary

Abstract

We sampled the Klang estuary during the inter-monsoon and northeast monsoon period (July–Nov 2011, Oct–Nov 2012), which coincided with higher rainfall and elevated Klang River flow. The increased freshwater inflow into the estuary resulted in water column stratification that was observed during both sampling periods. Dissolved oxygen (DO) dropped below 63 μM, and hypoxia was observed. Elevated river flow also transported dissolved inorganic nutrients, chlorophyll a and bacteria to the estuary. However, bacterial production did not correlate with DO concentration in this study. As hypoxia was probably not due to in situ heterotrophic processes, deoxygenated waters were probably from upstream. We surmised this as DO correlated with salinity (R2 = 0.664, df = 86, p < 0.001). DO also decreased with increasing flushing time (R2 = 0.556, df = 11, p < 0.01), suggesting that when flushing time (> 6.7 h), hypoxia could occur at the Klang estuary. Here, we presented a model that related riverine flow rate to the post-heavy rainfall hypoxia that explicated the episodic hypoxia at Klang estuary. As Klang estuary supports aquaculture and cockle culture, our results could help protect the aquaculture and cockle culture industry here.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data availability

Available upon request.

References

  1. Ashley, R. M., Balmforth, D. J., Saul, A. J., & Blanksby, J. D. (2005). Flooding in the future – predicting climate change, risks and responses in urban areas. Water Science & Technology, 52(5), 265–273.

    CAS  Google Scholar 

  2. Barroso, H. D. S., Becker, H., & Melo, V. M. M. (2016). Influence of river discharge on phytoplankton structure and nutrient concentrations in four tropical semiarid estuaries. Brazilian Journal of Oceanography, 64(1), 37–48.

    Google Scholar 

  3. Breitburg, D. L. (2002). Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries, 25(4), 767–781.

    Google Scholar 

  4. Chong, V. C. (2007). Mangroves and fisheries linkages: the Malaysian perspective. Bulletin of Marine Science, 80(3), 755–772.

    Google Scholar 

  5. Corredor, J. E., Howarth, R. W., Twilley, R. R., & Morell, J. M. (1999). Nitrogen cycling and anthropogenic impact in the tropical inter-American seas. Biogeochemistry, 46, 163–178.

    CAS  Google Scholar 

  6. Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321, 926–929.

    CAS  Google Scholar 

  7. Dubuc, A., Waltham, N., Malerba, M., & Sheaves, M. (2017). Extreme dissolved oxygen variability in urbanized tropical wetlands: the need for detailed monitoring to protect nursery ground values. Estuarine, Coastal and Shelf Science, 198, 163–171.

    CAS  Google Scholar 

  8. Elliott, M., & Quintino, V. (2007). The estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Marine Pollution Bulletin, 54, 640–645.

    CAS  Google Scholar 

  9. Eyre, B. D., & Ferguson, A. J. P. (2005). Benthic metabolism and nitrogen cycling in a subtropical east Australian estuary (Brunswick): temporal variability and controlling factors. Limnology and Oceanography, 50(1), 81–96.

    CAS  Google Scholar 

  10. Ghosh, K., & Menon, S. V. G. (2010). Fully implicit 1D radiation hydrodynamics: validation and verification. Journal of Computational Physics, 229(19), 7488e7502.

    Google Scholar 

  11. Haralambidou, K., Sylaios, G., & Tsihrintzis, V. A. (2010). Salt-wedge propagation in Mediterranean micro-tidal river mouth. Estuarine, Coastal and Shelf Science, 90, 174–184.

    CAS  Google Scholar 

  12. Howarth, R., Chan, F., Conley, D. J., Garnier, J., Doney, S. C., Marino, R., & Billen, G. (2011). Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment, 9(1), 18–26.

    Google Scholar 

  13. Johnston, S. G., Slavich, P. G., Sullivan, L. A., & Hirst, P. (2003). Artificial drainage of floodwaters from sulfidic backswamps: effects on deoxygenation in an Australian estuary. Marine & Freshwater Research, 54, 781–795.

    CAS  Google Scholar 

  14. Kepner Jr., R. L., & Pratt, J. R. (1994). Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiological Reviews, 58, 603–615.

    CAS  Google Scholar 

  15. Ketchum, B. H. (1950). Hydrographic factors involved in the dispersion of pollutants introduced into tidal waters. Journal of the Boston Society of Civil Engineers, 37, 296–314.

    Google Scholar 

  16. Knight, J. M., Griffin, L., Dale, P. E. R., & Sheaves, M. (2013). Short-term dissolved oxygen patterns in sub-tropical mangroves. Estuarine, Coastal and Shelf Science, 131, 290–296.

    CAS  Google Scholar 

  17. Lai, Z. W., Teoh, H. W., Lee, C. W., Lee, S. L., Saito, H., & Chong, V. C. (2020). Macrobenthic community associated with semi-cultured blood cockles (Tegillarca granosa) in tropical mudflats. Continental Shelf Research, 195, 104061.

    Google Scholar 

  18. Lee, C. W., & Bong, C. W. (2006). Carbon flux through bacteria in a eutrophic tropical environment: Port Klang waters. In E. Wolanski (Ed.), The environment in Asia Pacific harbours (pp. 329–345). Dordrecht: Springer.

    Google Scholar 

  19. Lee, C. W., & Bong, C. W. (2008). Bacterial abundance and production and their relation to primary production in tropical coastal waters of Peninsular Malaysia. Marine & Freshwater Research, 59(1), 10–21.

    CAS  Google Scholar 

  20. Lee, C. W., Kudo, I., Yokokawa, T., Yanada, M., & Maita, Y. (2002). Dynamics of bacterial respiration and related growth efficiency, dissolved nutrients and dissolved oxygen concentration in a subarctic coastal embayment. Marine & Freshwater Research, 53(1), 1–7.

    CAS  Google Scholar 

  21. Lee, C. W., Bong, C. W., & Hii, Y. S. (2009). Temporal variation of bacterial respiration and growth efficiency in tropical coastal waters. Applied and Environmental Microbiology, 75(24), 7594–7601.

    CAS  Google Scholar 

  22. Lee, H. L., Tangang, F., Wahap, M. H., & Ang, S. Y. (2015). Seasonal hypoxia occurrence at Terengganu estuary, Malaysia and its potential formation mechanisms. IOP Conference Series: Materials Science and Engineering, 136, 012068.

    Google Scholar 

  23. Lenderink, G., & van Meijgaard, E. (2008). Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature Geoscience, 1, 511–514.

    CAS  Google Scholar 

  24. Lim, J. H., & Lee, C. W. (2017). Effects of eutrophication on diatom abundance, biovolume and diversity in tropical coastal waters. Environmental Monitoring and Assessment, 189, 432.

    Google Scholar 

  25. Lim, H. C., Leaw, C. P., Tan, T. H., Kon, N. F., Yek, L. H., Hii, K. S., Teng, S. T., Razali, R. M., Usup, G., Iwataki, M., & Lim, P. T. (2014). A bloom of Karlodinium australe (Gymnodiales, Dinophyceae) associated with mass mortality of cage-cultured fishes in West Johor Strait, Malaysia. Harmful Algae, 40, 51–62.

    CAS  Google Scholar 

  26. Lim, J. H., Lee, C. W., Bong, C. W., Affendi, Y. A., Hii, Y. S., & Kudo, I. (2018). Distributions of particulate and dissolved phosphorus in aquatic habitats of Peninsular Malaysia. Marine Pollution Bulletin, 128, 415–427.

    CAS  Google Scholar 

  27. Lim, J. H., Wong, Y. Y., Lee, C. W., Bong, C. W., & Kudo, I. (2019). Long-term comparison of dissolved nitrogen species in tropical estuarine and coastal water systems. Estuarine, Coastal and Shelf Science, 222, 103–111.

    CAS  Google Scholar 

  28. Mattone, C., & Sheaves, M. (2017). Patterns, drivers and implications of dissolved oxygen dynamics in tropical mangrove forests. Estuarine, Coastal and Shelf Science, 197, 205–213.

    CAS  Google Scholar 

  29. McLusky, D. S. (1993). Marine and estuarine gradients. Netherlands Journal of Aquatic Ecology, 27, 489–493.

    Google Scholar 

  30. Middelburg, J. J., & Levin, L. A. (2009). Coastal hypoxia and sediment biogeochemistry. Biogeosciences, 6, 1273–1293.

    CAS  Google Scholar 

  31. Murshed, M. F., Aslam, Z., Lewis, R., Chow, C., Wang, D., Drikas, M., & Leeuwen, J. V. (2014). Changes in the quality of river water before, during and after a major flood event associated with a La Niña cycle and treatment for drinking purposes. Journal of Environmental Sciences, 26, 1985–1993.

    Google Scholar 

  32. Nagasoe, S., Yurimoto, T., Suzuki, K., Maeno, Y., & Kimoto, K. (2011). Effects of hydrogen sulphide on the feeding activity of Manila clam Ruditapes philippinarum. Aquatic Biology, 13, 293–302.

    Google Scholar 

  33. Naqvi, S. W. A., Jayakumar, D. A., Narvekar, P. V., Naik, H., Sarma, V. S., D’Souza, W., Joseph, T., & George, M. D. (2000). Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature, 408, 346–349.

    CAS  Google Scholar 

  34. Noriega, C. E., Santiago, M. F., Façanha, P., Silva, M. D. G. G., Silva, R. A., Montes, M. D. J. F., Araújo Filho, M., Costa, A. M. P., Eskinazi Leça, E., & Neumann-Leitão, S. (2013). The instantaneous transport of inorganic and organic material in a highly polluted tropical estuary. Marine & Freshwater Research, 64(6), 562–572.

    CAS  Google Scholar 

  35. NRC (National Research Council). (2000). Clean coastal waters: understanding and reducing the effects of nutrient pollution. Washington, DC: National Academies Press.

    Google Scholar 

  36. Okamura, K., Tanaka, K., Siow, R., Man, A., Kodama, M., & Ichikawa, T. (2010). Spring tide hypoxia with relation to chemical properties of the sediments in the Matang Mangrove Estuary, Malaysia. Japan Agricultural Research Quarterly JARQ, 44(3), 325–333.

    Google Scholar 

  37. Parsons, T. R., Maita, Y., & Lalli, C. M. (1984). A manual of chemical and biological methods for seawater analysis. Oxford: Pergamon Press.

    Google Scholar 

  38. Peña, M. A., Katsev, S., Oguz, T., & Gilbert, D. (2010). Modeling dissolved oxygen dynamics and hypoxia. Biogeosciences, 7, 933–957.

    Google Scholar 

  39. Rabalais, N. N., Turner, R. E., & Wiseman Jr., W. J. (2002). Gulf of Mexico hypoxia a.k.a. “The dead zone”. Annual Review of Ecology and Systematics, 33, 235–263.

    Google Scholar 

  40. Rakocinski, C. F. (2012). Evaluating macrobenthic process indicators in relation to organic enrichment and hypoxia. Ecological Indicators, 13, 1e12.

    Google Scholar 

  41. Saeck, E. A., Hadwen, W. L., Rissik, D., O’Brien, K. R., & Burford, M. A. (2013). Flow events drive patterns of phytoplankton distribution along a river-estuary-bay continuum. Marine & Freshwater Research, 64(7), 655–670.

    Google Scholar 

  42. Stow, C. A., Qian, S. S., & Craig, J. K. (2005). Declining threshold for hypoxia in the Gulf of Mexico. Environmental Science & Technology, 39, 716–723.

    CAS  Google Scholar 

  43. Suhaila, J., Deni, S. M., Wan Zin, W. Z., & Jemain, A. A. (2010). Trends in Peninsular Malaysia rainfall data during the southwest monsoon and northeast monsoon seasons: 1975–2004. Sains Malaysiana, 39(4), 533–542.

    Google Scholar 

  44. Taguchi, F., & Fujiwara, T. (2009). Carbon dioxide stored and acidified low oxygen bottom waters in coastal sea, Japan. Estuarine, Coastal and Shelf Science, 86, 429–433.

    Google Scholar 

  45. Taylor, D. I., Oviatt, C. A., & Borkman, D. G. (2011). Non-linear responses of a coastal aquatic ecosystem to large decreases in nutrient and organic loadings. Estuaries and Coasts, 34(4), 745–757.

    CAS  Google Scholar 

  46. The Hydrographer. (2007). Approaches to north and south port, Pelabuhan Klang (2nd ed.). George Town: Royal Malaysian Navy.

    Google Scholar 

  47. Tweedley, J. R., Hallett, C. S., Warwick, R. M., Clarke, K. R., & Potter, I. C. (2016). The hypoxia that developed in a microtidal estuary following an extreme storm produced dramatic changes in the benthos. Marine & Freshwater Research, 67, 327e341.

    Google Scholar 

  48. Vaquer-Sunyer, R., & Duarte, C. M. (2008). Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 105, 15452–15457.

    CAS  Google Scholar 

  49. Wong, V. N. L., Johnston, S. G., Bush, R. T., Sullivan, L. A., Clay, C., Burton, E. D., & Slavich, P. G. (2010). Spatial and temporal changes in estuarine water quality during a post-flood hypoxic event. Estuarine, Coastal and Shelf Science, 87, 73–82.

    CAS  Google Scholar 

  50. Wong, V. N. L., Johnston, S. G., Burton, E. D., Bush, R. T., Sullivan, L. A., & Slavich, P. G. (2011). Anthropogenic forcing of estuarine hypoxic events in sub-tropical catchments: landscape drivers and biogeochemical processes. Science of the Total Environment, 409, 5368–5375.

    CAS  Google Scholar 

  51. Yurimoto, T., Kassim, F. M., Fuseya, R., & Man, A. (2014). Mass mortality event of the blood cockle, Anadara granosa, in aquaculture ground along Selangor coast, Peninsular Malaysia. International Aquatic Research, 6, 177–186.

    Google Scholar 

  52. Zhang, J., Gilbert, D., Gooday, A. J., Levin, L., Naqvi, S. W. A., Middelburg, J. J., Scranton, M., Ekau, W., Peña, A., Dewitte, B., Oguz, T., Monteiro, P. M. S., Urban, E., Rabalais, N. N., Ittekkot, V., Kemp, W. M., Ulloa, O., Elmgren, R., Escobar-Briones, E., & Van der Plas, A. K. (2010). Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development. Biogeosciences, 7, 1443–1467.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Malaysia Meteorological Department for providing the rainfall data and the Department of Irrigation and Drainage Malaysia for the Klang River flow rates.

Funding

We are grateful to the Ministry of Higher Education Malaysia for the FRGS grant (FP061-2018A or FRGS/1/2018/WAB09/UM/02/1) and HiCoE grant (IOES-2014D).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Choon Weng Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, C.W., Lim, J.H., Heng, P.L. et al. Influence of elevated river flow on hypoxia occurrence, nutrient concentration and microbial dynamics in a tropical estuary. Environ Monit Assess 192, 660 (2020). https://doi.org/10.1007/s10661-020-08625-3

Download citation

Keywords

  • Klang estuary
  • Peninsular Malaysia
  • Hypoxia
  • Dissolved oxygen dynamics
  • Klang River flow rate