Skip to main content

Advertisement

Log in

Monitoring vegetation change and their potential drivers in Yangtze River Basin of China from 1982 to 2015

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Monitoring vegetation change and their potential drivers are important to environmental management. Previous studies on vegetation change detection and driver discrimination were two independent fields. Specifically, change detection methods focus on nonlinear and linear change behaviors, i.e., abrupt change (AC) and gradual change (GC). But driver discrimination studies mainly used linear coupling models which rarely concerned the nonlinear behaviors of vegetation. The two diagnoses need be treated as sequential flow because they have inner causality mechanisms. Furthermore, ACs concealed in time series may induce over/under-estimate contributions from human. We chose the Yangtze River Basin of China (YRB) as a study area, first separated ACs from GCs using breaks for additive and seasonal trend method, then discriminated drivers of GCs using optimized Restrend method. Results showed that (1) 2.83% of YRB were ACs with hotspots in 1998 (30.2%), 2003 (10.4%), and 2002 (7.6%); 66.7% of YRB experienced GC with 94.8% of which were positive; and (2) climate induced more area but less dramatic GCs than human activities. Further analysis showed that temperature was the main climate driver to GCs, while human-induced GCs were related to local eco-policies. The widely occurring ACs in 1998 were related to the flooding catastrophe, while the dramatic ACs in sub-basin 12 in 2003 may result from urbanization. This paper provides clear insights on the vegetation changes and their drivers at a relatively long perspective (i.e., 34 years). Sequential combination of specifying different vegetation behaviors with driver analysis could improve driver characterizations, which is key to environmental assessment and management in YRB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Cohen, W. B., Yang, Z., & Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync-Tools for calibration and validation. Remote Sensing of Environment, 114, 2911–2924. https://doi.org/10.1016/j.rse.2010.07.010.

    Article  Google Scholar 

  • Coppin, P., Jonckheere, K. Nackaerts, Muys B., & Lambin E. (2004). Digital change detection methods in ecosystem monitoring: a review. International Journal of Remote Sensing, 25(9), 1565–1596. https://doi.org/10.1080/0143116031000101675.

  • Cui, L., Gao, C., Zhao, X., Ma, Q., Zhang, M., Li, W., Song, H., Wang, Y., Li, S., & Zhang, Y. (2013). Dynamics of the lakes in the middle and lower reaches of the Yangtze River basin, China, since late nineteenth century. Environmental Monitoring and Assessment, 185, 4005–4018. https://doi.org/10.1007/s10661-012-2845-0.

    Article  CAS  Google Scholar 

  • Cui, L., Wang, L., Qu, S., Singh, R. P., Lai, Z., & Yao, R. (2019). Spatiotemporal extremes of temperature and precipitation during 1960–2015 in the Yangtze River Basin (China) and impacts on vegetation dynamics. Theoretical and Applied Climatology., 136, 675–692. https://doi.org/10.1007/s00704-018-2519-0.

    Article  Google Scholar 

  • Du, J. Q., Shu, J., Zhao, C., Jia E., Wang L. X., Xiang B. Fang G. L., Liu W. L., & He P. (2016). Comparison of GIMMS NDVI3g and GIMMS NDVIg for monitoring vegetation activity and its responses to climate changes in Xinjiang during 1982-2006. Acta Ecologica Sinica, 36(21), 6738–6749. https://doi.org/10.5846/stxb201504190805.

  • Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J. P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J. Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M. P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., & Vuichard, N. (2013). Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate Dynamics, 40, 2123–2165. https://doi.org/10.1007/s00382-012-1636-1.

    Article  Google Scholar 

  • Evans, J., & Geerken, R. (2004). Discrimination between climate and human-induced dryland degradation. Journal of Arid Environments, 57(4), 535–554. https://doi.org/10.1016/S0140-1963(03)00121-6.

    Article  Google Scholar 

  • Forkel, M., Carvalhais, N., & Verbesselt, J. (2013). Trend change detection in NDVI time series: effects of inter-annual variability and methodology. Remote Sensing, 5(5), 2113–2144. https://doi.org/10.3390/rs5052113.

    Article  Google Scholar 

  • Gao, J., Zhang, Y., Guo, J., Jin F., & Zhang K. (2013). Occurrence of organotins in the Yangtze River and the Jialing River in the urban section of Chongqing, China. Environmental Monitoring and Assessment, 185, 3831–3837. https://doi.org/10.1007/s10661-012-2832-5.

  • Gold, A. U. (2012). Global weirdness: Severe storms, deadly heat waves, relentless drought, rising seas, and the weather of the future. In Reports of the National Center for Science Education.

    Google Scholar 

  • Gries, T., Redlin, M., & Ugarte, J. E. (2019). Human-induced climate change: the impact of land-use change. Theoretical and Applied Climatology., 135(3–4), 1031–1044. https://doi.org/10.1007/s00704-018-2422-8.

    Article  Google Scholar 

  • Gu, X., Xiao, Y., Yin, S., Pan, X., Niu, Y., Shao, J., Cui, Y., Zhang, Q., & Hao, Q. (2017). Natural and anthropogenic factors affecting the shallow groundwater quality in a typical irrigation area with reclaimed water, North China Plain. Environmental Monitoring and Assessment, 189, 514. https://doi.org/10.1007/s10661-017-6229-3.

    Article  CAS  Google Scholar 

  • Hao, L., Pan, C., Fang, D., Zhang, X., Zhou, D., Liu, P., Liu, Y., & Sun, G. (2018). Quantifying the effects of overgrazing on mountainous watershed vegetation dynamics under a changing climate. Science of the Total Environment, 639, 1408–1420. https://doi.org/10.1016/j.scitotenv.2018.05.224.

    Article  CAS  Google Scholar 

  • Hawinkel, P. (2019). Modeling vegetation dynamics driven by climate variability and land use changes in Rwanda. Web..

  • He, C., Tian, J., Gao, B., & Zhao, Y. (2015). Differentiating climate- and human-induced drivers of grassland degradation in the Liao River Basin, China. Environmental Monitoring and Assessment, 187, 4199. https://doi.org/10.1007/s10661-014-4199-2.

    Article  Google Scholar 

  • Hu Q., Pan F.F., Pan X.B., Zhang D., Li Q.Y., Pan Z.H., & Wei Y.R. (2015). Spatial analysis of climate change in Inner Mongolia during 1961–2012, China. Applied Geography, 60, 254–260. https://doi.org/10.1016/j.apgeog.2014.10.009.

  • Hu, H., Wang, J., Wang, Y., & Long X. (2019). Spatial-temporal pattern and influencing factors of grain production and food security at county level in the Yangtze River Basin from 1990 to 2015. Resources and Environment in the Yangtze Basin (in Chinese), 28(2), 359–367.

  • Huang, K., Zhang, Y., Zhu, J., Liu, Y., Zu, J., & Zhang, J. (2016). The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet Plateau. Remote Sensing, 8(10), 876. https://doi.org/10.3390/rs8100876.

    Article  Google Scholar 

  • Ivits, E., Cherlet, M., Sommer, S., & Mehl, W. (2013). Addressing the complexity in non-linear evolution of vegetation phenological change with time-series of remote sensing images. Ecological Indicators, 26, 49–60. https://doi.org/10.1016/j.ecolind.2012.10.012.

    Article  Google Scholar 

  • Jamali, S., Jönsson, P., Eklundh, L., Ardö, J., & Seaquist, J. (2015). Detecting changes in vegetation trends using time series segmentation. Remote Sensing of Environment, 156, 182–195. https://doi.org/10.1016/j.rse.2014.09.010.

    Article  Google Scholar 

  • Jong, R. D., Bruin, S. D., Wit, A. J. W. de, Schaepman, M.E., & Dent, D.L. (2011). Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sensing of Environment, 115, 692–702. https://doi.org/10.1016/j.rse.2010.10.011.

  • Jong R. D., Verbesselt J., Zeileis A., et al. (2013). Shifts in global vegetation activity trends. Remote Sensing, 5(3), 1117–1133. https://doi.org/10.3390/rs5031117.

  • Kennedy, R. E., Cohen, W. B., & Schroeder, T. A. (2007). Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sensing of Environment, 110, 370–386. https://doi.org/10.1016/j.rse.2007.03.010.

    Article  Google Scholar 

  • Kennedy, R. E., Yang, Z., & Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr-Temporal segmentation algorithms. Remote Sensing of Environment, 114, 2897–2910. https://doi.org/10.1016/j.rse.2010.07.008.

    Article  Google Scholar 

  • Kim, D. Y., Thomas, V., Olson, J., Williams, M., & Clements, N. (2013). Statistical trend and change-point analysis of land-cover-change patterns in East Africa. International Journal of Remote Sensing, 34(19), 6636–6650. https://doi.org/10.1080/01431161.2013.804224.

    Article  Google Scholar 

  • Leng, G., Tang, Q., & Rayburg, S. (2015). Climate change impacts on meteorological, agricultural and hydrological droughts in China. Global and Planetary Change, 126, 23–34. https://doi.org/10.1016/j.gloplacha.2015.01.003.

    Article  Google Scholar 

  • Li, A., Wu, J., & Huang, J. (2012). Distinguishing between human-induced and climate-driven vegetation changes: a critical application of RESTREND in Inner Mongolia. Landscape Ecology, 27(7), 969–982. https://doi.org/10.1007/s10980-012-9751-2.

    Article  CAS  Google Scholar 

  • Li, R., Feng, C., Wang, D., He, M., Hu, L., & Shen, Z. (2017). Effect of water flux and sediment discharge of the Yangtze River on PAHs sedimentation in the estuary. Environmental Monitoring and Assessment, 189, 10. https://doi.org/10.1007/s10661-016-5729-x.

    Article  CAS  Google Scholar 

  • Liu, H., Zhang, M., Lin, Z., & Xu, X. (2018). Spatial heterogeneity of the relationship between vegetation dynamics and climate change and their driving forces at multiple time scales in Southwest China. Agricultural and Forest Meteorology, 256-257, 10–21. https://doi.org/10.1016/j.agrformet.2018.02.015.

    Article  Google Scholar 

  • Ma, T. (2018). Quantitative responses of satellite-derived nighttime lighting signals to anthropogenic land-use and land-cover changes across China. Remote Sensing, 10, 1447. https://doi.org/10.3390/rs10091447.

    Article  Google Scholar 

  • Ma, T. (2019). Spatiotemporal characteristics of urbanization in China from the perspective of remotely sensed big data of nighttime light. Journal of Geo-Information Science (in Chinese), 21(1), 59–67. https://doi.org/10.12082/dqxxkx.2019.180361.

    Article  Google Scholar 

  • Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R. C., Bielecki, C. R., Counsell, C. W. W., Dietrich, B. S., Johnston, E. T., Louis, L. V., Lucas, M. P., McKenzie, M. M., Shea, A. G., Tseng, H., Giambelluca, T. W., Leon, L. R., Hawkins, E., & Trauernicht, C. (2017). Global risk of deadly heat. Nature Climate Change, 7, 501–506. https://doi.org/10.1038/nclimate3322.

    Article  Google Scholar 

  • Mu, S. J., Yang, H., Li, J. L., Chen Y.Z., Gang C.C., Zhou W., & Ju W.M. (2013). Spatio-temporal dynamics of vegetation coverage and its relationship with climate factors in Inner Mongolia, China. Journal of Geographical Sciences, 23(2), 231–246. https://doi.org/10.1007/s11442-013-1006-x.

  • Prajjwal, K. P., & Bardan, G. (2012). Time-series analysis of NDVI from AVHRR data over the Hindu Kush–Himalayan region for the period 1982–2006. International Journal of Remote Sensing, 33(21), 6710–6721. https://doi.org/10.1080/01431161.2012.692836.

    Article  Google Scholar 

  • Prince, S. D. (2010). Evidence from rain-use efficiencies does not indicate extensive Sahelian desertification. Global Change Biology, 4(4), 359–374. https://doi.org/10.1046/j.1365-2486.1998.00158.x.

    Article  Google Scholar 

  • Qu, S., Wang, L., Lin, A., Zhu, H., & Yuan, M. (2018). What drives the vegetation restoration in Yangtze River basin, China: climate change or anthropogenic factors? Ecological Indicators, 90, 438–450. https://doi.org/10.1016/j.ecolind.2018.03.029.

    Article  Google Scholar 

  • Shu, S., Yu, B. L., Wu, J. P., & Liu H., X. (2011). Methods for deriving urban built-up area using night-light data: assessment and application. Remote Sensing Technology and Application (in Chinese), 26(2), 169–176.

  • Verbesselt J, Hyndman R, Zeileis A, Culvenor D. (2010a). Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sensing of Environment, 114(12), 2970–2980. https://doi.org/10.1016/j.rse.2010.08.003

  • Verbesselt J., Hyndman R., Newnham G., & Culvenor D. (2010b). Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114(1), 106–115. https://doi.org/10.1016/j.rse.2009.08.014.

  • Wang, H., Liu, G. H., Li, Z. S., Ye X., Fu B.J., & Lv Y.H. (2018). Impacts of drought and human activity on vegetation growth in the grain for green program region, China. Chinese Geographical Science, 28, 470–481. https://doi.org/10.1007/s11769-018-0952-8.

  • Wen, Z. F., Wu, S. J., Chen, J. L., & Lv M. Q. (2017). NDVI indicated long-term interannual changes in vegetation activities and their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China. Science of The Total Environment., 574, 947–959. https://doi.org/10.1016/j.scitotenv.2016.09.049.

  • Wessels, K. J., Prince, S. D., Malherbe, J., Small, J., Frost, P. E., & VanZyl, D. (2007). Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. Journal of Arid Environments, 68, 271–297. https://doi.org/10.1016/j.jaridenv.2006.05.015.

    Article  Google Scholar 

  • Wessels, K. J., Bergh, F. V. D., & Scholes, R. J. (2012). Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sensing of Environment, 125, 10–22. https://doi.org/10.1016/j.rse.2012.06.022.

    Article  Google Scholar 

  • Wu, J. S., Feng, Y. F., Zhang, X. Z., Susanne W., Britta T., Paolo T., & Song C.Q. (2017). Grazing exclusion by fencing non-linearly restored the degraded alpine grasslands on the Tibetan Plateau. Scientific Reports, 7, 15202. https://doi.org/10.1038/s41598-017-15530-2.

  • Xu, L., Li, B., Yuan, Y., Gao, X., Zhang, T., & Sun, Q. (2016). Detecting different types of directional land cover changes using MODIS NDVI time series dataset. Remote Sensing, 8(6), 495. https://doi.org/10.3390/rs8060495.

    Article  Google Scholar 

  • Xu, L., Tu, Z., Zhou, Y., & Yu, G. (2018). Profiling human-induced vegetation change in the Horqin Sandy land of China using time series datasets. Sustainability, 10, 1068. https://doi.org/10.3390/su10041068.

    Article  Google Scholar 

  • Yuan, M., Wang, L., Lin, A., Liu, Z., & Qu, S. (2019a). Variations in land surface phenology and their response to climate change in Yangtze River basin during 1982–2015. Theoretical and Applied Climatology., 137, 1659–1674. https://doi.org/10.1007/s00704-018-2699-7.

    Article  Google Scholar 

  • Yuan, J., Xu, Y., Xiang, J., Wu, L., & Wang, D. (2019b). Spatiotemporal variation of vegetation coverage and its associated influence factor analysis in the Yangtze River Delta, eastern China. Environmental Science and Pollution Research., 26, 32866–32879. https://doi.org/10.1007/s11356-019-06378-2.

    Article  Google Scholar 

  • Zeileis, A. (2005). A unified approach to structural change tests based on ML scores, F statistics, and OLS residuals. Econometric Reviews, 24, 445–466. https://doi.org/10.1080/07474930500406053.

    Article  Google Scholar 

  • Zeileis, A., Leisch, F., Hornik, K., & Kleiber C. (2002). Strucchange: an R package for testing for structural change in linear regression models. Journal of statistical Software, 7, 27509. https://doi.org/10.18637/jss.v007.i02.

  • Zeileis, A., Leisch, F., Kleiber, C., & Hornik, K. (2005). Monitoring structural change in dynamic econometric models. Journal of Applied Econometrics, 20, 99–121. https://doi.org/10.1002/jae.776.

    Article  Google Scholar 

  • Zhao, Y., He, C., & Zhang, Q. (2012). Monitoring vegetation dynamics by coupling linear trend analysis with change vector analysis: a case study in the Xilingol steppe in northern China. International Journal of Remote Sensing, 33, 287–308. https://doi.org/10.1080/01431161.2011.594102.

    Article  Google Scholar 

  • Zhao, X., Hu, H., Shen, H., Zhou, D., Zhou, L., Myneni, R. B., & Fang, J. (2015). Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau. Landscape Ecology, 30, 1599–1611. https://doi.org/10.1007/s10980-014-0095-y.

    Article  Google Scholar 

  • Zhu, Z., & Woodcock, C. E. (2013). Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144, 152–171. https://doi.org/10.1016/j.rse.2014.01.011.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Yumeng Yang for her assistance with data collection. The authors are grateful to the anonymous reviewers for their constructive criticism and comments.

Funding

This study was funded by China Scholarship Council, the National Natural Science Foundation of China (grant no. 41701474 and 41701467), the National Key Research and Development Plan of China (grant no. 2016YFC0500205), the National Basic Research Program of China (grant no. 2015CB954103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Yu, G., Tu, Z. et al. Monitoring vegetation change and their potential drivers in Yangtze River Basin of China from 1982 to 2015. Environ Monit Assess 192, 642 (2020). https://doi.org/10.1007/s10661-020-08595-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08595-6

Keywords

Navigation