Skip to main content
Log in

Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

The Mongolian Plateau, comprising the nation of Mongolia and the Inner Mongolia Autonomous Region of China, has been influenced by significant climatic changes and intensive human activities. Previous satellite-based analyses have suggested an increasing tendency in the vegetation cover over recent decades. However, several ground-based observations have indicated a decline in vegetation production. This study aimed to explore long-term changes in vegetation greenness and land surface phenology in relation to changes in temperature and precipitation on the Plateau between 1982 and 2011 using the normalized difference vegetation index (NDVI). Across the Plateau, a significantly positive trend in the growing season (May–September) NDVI was observed from 1982 to 1998, but since that time, the NDVI has not shown a persistent increase, thus causing an insignificant trend over the entire study period. For the steppe vegetation (a major vegetation type on the Plateau), the NDVI increased significantly in spring but decreased in summer. Precipitation was the dominant factor related to changes in steppe vegetation. Warming in spring contributed to earlier vegetation green-up only in meadow steppe vegetation, implying that water deficiency in typical and desert steppe vegetation may eliminate the effect of warming. Our results also suggest a combined effect of climatic and non-climatic factors and highlight the need to examine the role of regional human activities in the control of vegetation dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Addison J, Friedel M, Brown C, Davies J, Waldron S (2012) A critical review of degradation assumptions applied to Mongolia’s Gobi Desert. Rangel J 34(2):125–137

    Article  Google Scholar 

  • Beck HE, McVicar TR, van Dijk A, Schellekens J, de Jeu R A, Bruijnzeel L A (2011) Global evaluation of four AVHRR–NDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sens Environ 115(10):2547–2563

    Article  Google Scholar 

  • Cong N, Wang T, Nan H, Ma Y, Wang X, Myneni R B, Piao S (2013) Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Global Change Biol 19(3):881–891

    Article  Google Scholar 

  • Craine JM, Nippert JB, Elmore AJ, Skibbe AM, Hutchinson SL, Brunsell NA (2011) Timing of climate variability and grassland productivity. P Natl Acad Sci USA 109(9):3401–3405

    Article  Google Scholar 

  • de Jong R, Verbesselt J, Schaepman ME, Bruin S (2012) Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Global Change Biol 18(2):642–655

    Article  Google Scholar 

  • de Jong R, Verbesselt J, Zeileis A, Schaepman ME (2013) Shifts in global vegetation activity trends. Remote Sens 5:1117–1133

    Article  Google Scholar 

  • Evans J, Geerken R (2004) Discrimination between climate and human-induced dryland degradation. J Arid Environ 57(4):535–554

    Article  Google Scholar 

  • Fang JY, Piao SL, He JS, Ma W (2004) Increasing terrestrial vegetation activity in China, 1982–1999. Sci China Ser C 47(3):229–240

    Google Scholar 

  • Fang J, Piao S, Zhou L, He J, Wei F, Myneni RB, Compton JT, Tan K (2005) Precipitation patterns alter growth of temperate vegetation. Geophys Res Lett 32(21):L21411

    Article  Google Scholar 

  • Fensholt R, Proud SR (2012) Evaluation of earth observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ 119:131–147

    Article  Google Scholar 

  • Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, Wessels K (2012) Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote Sens Environ 121:144–158

    Article  Google Scholar 

  • Gao JX, Chen YM, Lu SH, Feng CY, Chang XL, Ye SX, Liu JD (2012) A ground spectral model for estimating biomass at the peak of the growing season in Hulunbeier grassland, Inner Mongolia, China. Int J Remote Sens 33(13):4029–4043

    Article  Google Scholar 

  • Hall DO, Ojima DS, Parton WJ, Scurlock JMO (1995) Response of temperate and tropical grasslands to CO2 and climate change. J Biogeogr 22:537–547

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids of monthly climatic observations. Int J Climatol 34(3):623–642

    Article  Google Scholar 

  • Holben BN (1986) Characteristics of maximum-value composite images for temporal AVHRR data. Int J Remote Sens 7:1435–1445

    Article  Google Scholar 

  • John R, Chen JQ, Lu N, Wilske B (2009) Land cover/land use change in semi-arid Inner Mongolia: 1992–2004. Environ Res Lett 4(4):045010

    Article  Google Scholar 

  • Kawada K, Wuyunna, Nakamura T (2011) Land degradation of abandoned croplands in the Xilingol steppe region, Inner Mongolia, China. Grassl Sci 57(1):58–64

    Article  Google Scholar 

  • Leisher C, Hess S, Boucher TM, van Beukering P, Sanjayan M (2012) Measuring the impacts of community-based grasslands management in Mongolia’s Gobi. PLoS One 7(2):e30991. doi:10.1371/journal.pone.0030991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li CL, Hao XY, Zhao ML, Han G, Willms WD (2008) Influence of historic sheep grazing on vegetation and soil properties of a desert steppe in Inner Mongolia. Agric Ecosyst Environ 128(1–2):109–116

    Article  Google Scholar 

  • Li A, Wu JG, Huang JH (2012) Distinguishing between human-induced and climate-driven vegetation changes: a critical application of RESTREND in Inner Mongolia. Landsc Ecol 27(7):969–982

    Article  CAS  Google Scholar 

  • Liancourt P, Spence LA, Boldgiv B, Lkhagva A, Helliker BR, Casper BB, Petraitis PS (2012) Vulnerability of the northern Mongolian steppe to climate change: insights from flower production and phenology. Ecology 93(4):815–824

    Article  PubMed  Google Scholar 

  • Ma WH, Fang JY, Yang YH, Mohammat A (2010) Biomass carbon stocks and their changes in northern China’s grasslands during 1982–2006. Sci China Ser C 53(7):841–850

    Article  Google Scholar 

  • Miao LJ, Luan YB, Luo XZ, Liu Q, Moore JC, Nath R, He B, Cui X (2013) Analysis of the phenology in the Mongolian Plateau by inter-comparison of global vegetation datasets. Remote Sens 5(10):5193–5208

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386(6626):698–702

    Article  CAS  Google Scholar 

  • Myoung B, Choi YS, Choi SJ, Park SK (2012) Impact of vegetation on land-atmosphere coupling strength and its implication for desertification mitigation over East Asia. J Geophys Res Atmos 117:D12113. doi:10.1029/2011JD017143

    Article  Google Scholar 

  • Nicholson S (2005) On the question of the “recovery” of the rains in the West African Sahel. J Arid Environ 63(3):615–641

    Article  Google Scholar 

  • Park HS, Sohn BJ (2010) Recent trends in changes of vegetation over East Asia coupled with temperature and rainfall variations. J Geophys Res 115:D14101

    Article  Google Scholar 

  • Peng SS, Chen AP, Xu L, Cao C, Fang J, Myneni RB, Pinzon JE, Tucker CJ, Piao S (2011) Recent change of vegetation growth trend in China. Environ Res Lett 6(4):044027

    Article  Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20(9):503–510

    Article  PubMed  Google Scholar 

  • Piao SL, Fang JY, Zhou LM, Guo Q, Henderson M, Ji  W, Li Y, Tao S (2003) Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. J Geophys Res 108(D14):4401

    Article  Google Scholar 

  • Piao SL, Cui MD, Chen AP, Wang X, Ciais P, Liu J, Tang Y (2011) Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agr For Meteorol 151(12):1599–1608

    Article  Google Scholar 

  • Prince SD (1991) Satellite remote sensing of primary production: comparison of results for Sahelian grasslands 1981–1988. Int J Remote Sens 12(6):1301–1311

    Article  Google Scholar 

  • Reed BC, Brown JF, VanderZee D, Loveland TR, Merchant JW, Ohlen DO (1994) Measuring phenological variability from satellite imagery. J Veg Sci 5(5):703–714

    Article  Google Scholar 

  • Runnstrom MC (2003) Rangeland development of the Mu Us sandy land in semiarid China: An analysis using landsat and NOAA remote sensing data. Land Degrad Dev 14(2):189–202

    Article  Google Scholar 

  • Sankey TT, Sankey JB, Weber KT, Montagne C (2009) Geospatial assessment of grazing regime shifts and sociopolitical changes in a Mongolian rangeland. Rangel Ecol Manag 62(6):522–530

    Article  Google Scholar 

  • Savitzky A, Golay M (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  • Schwartz MD (1998) Green-wave phenology. Nature 394(6696):839–840

    Article  CAS  Google Scholar 

  • Schwartz MD, Hanes JM (2010) Intercomparing multiple measures of the onset of spring in eastern North America. Int J Climatol 30(11):1614–1626

    Article  Google Scholar 

  • Seaquist JW, Hickler T, Eklundh L, Ardö J, Heumann BW (2008) Disentangling the effects of climate and people on Sahel vegetation dynamics. Biogeosciences 5(4):3045–3067

    Article  Google Scholar 

  • Sternberg T, Tsolmon R, Middleton N, Thomas D (2011) Tracking desertification on the Mongolian steppe through NDVI and field-survey data. Int J Digit Earth 4(1):50–64

    Article  Google Scholar 

  • Tong C, Wu J, Yong S, Yang J, Yong W (2004) A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. J Arid Environ 59(1):133–149

    Article  Google Scholar 

  • Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, Vermote EF, El Saleous N (2005) An extended AVHRR 8-KM NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26(20):4485–4498

    Article  Google Scholar 

  • Verbesselt J, Somers B, Lhermitte S, Jonckheere I, Van Aardt J, Coppin P (2007) Monitoring herbaceous fuel moisture content with SPOT VEGETATION time-series for fire risk prediction in savanna ecosystems. Remote Sens Environ 108(4):357–368

    Article  Google Scholar 

  • Wang J, Brown D, Chen J (2013) Drivers of the dynamics in net primary productivity across ecological zones on the Mongolian Plateau. Landsc Ecol 28(4):725–739

    Article  Google Scholar 

  • Wessels KJ, van den Bergh F, Scholes RJ (2012) Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens Environ 125:10–22

    Article  Google Scholar 

  • White MA, de Beurs KM, Didan K, Inouye DW, Richardson AD, Jensen OP, Lauenroth WK (2009) Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Global Change Biol 15(10):2335–2359

    Article  Google Scholar 

  • Xu DY, Kang XW, Zhuang DF, Pan JJ (2010) Multi-scale quantitative assessment of the relative roles of climate change and human activities in desertification—A case study of the Ordos Plateau, China. J Arid Environ 74(4):498–507

    Article  Google Scholar 

  • Xu L, Myneni RB, Chapin FS III, Callaghan TV, Pinzon JE, Tucker CJ, Zhu Z, Stroeve JC (2013) Temperature and vegetation seasonality diminishment over northern lands. Nat Clim Chang 3(6):581–586

    Google Scholar 

  • Yu FF, Price KP, Ellis J, Shi P (2003) Response of seasonal vegetation development to climatic variations in eastern central Asia. Remote Sens Environ 87(1):42–54

    Article  Google Scholar 

  • Yu H, Luedeling E, Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. P Natl Acad Sci USA 107(51):22151–22156

    Article  CAS  Google Scholar 

  • Zhang GG, Kang YM, Han GD, Sakurai K (2011) Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Glob Chang Biol 17(1):377–389

    Article  Google Scholar 

  • Zhang GL, Zhang YJ, Dong JW, Xiao X (2013) Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. P Natl Acad Sci USA 110(11):4309–4314

    Article  CAS  Google Scholar 

  • Zhao HL, Zhao XY, Zhou RL, Zhang TH, Drake S (2005) Desertification processes due to heavy grazing in sandy rangeland, Inner Mongolia. J Arid Environ 62(2):309–319

    Article  Google Scholar 

  • Zhao X, Tan K, Zhao S, Fang J (2011) Changing climate affects vegetation growth in the arid region of the northwestern China. J Arid Environ 75(10):946–952

    Article  Google Scholar 

Download references

Acknowledgments

We thank Y. F. Bai, Z. D. Guo, S. S. Peng, H. J. Nan and E. Z. Du for their assistance in data collection and preparation of the manuscript. The work was partly supported by the National Natural Science Foundation of China (#31330012 and 31321061), the National Basic Research Program of China on Global Change (2010CB950600), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Hu, H., Shen, H. et al. Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau. Landscape Ecol 30, 1599–1611 (2015). https://doi.org/10.1007/s10980-014-0095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-014-0095-y

Keywords

Navigation