Skip to main content
Log in

Combining geospatial analyses to optimize quality reference values of rare earth elements in soils

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

High pedological and geological variability can trigger the formation of REE hotspots, causing a need to optimize the establishment of quality reference values (QRVs). Thus, we determined the background concentrations of REEs in the soils of an emerging Brazilian state and used a combination of Moran’s I and indicator kriging to identify REE hotspots and determine QRVs. A total of 100 composite soil samples was collected at a 0.20 m depth to establish background concentrations, QRVs, and spatial distribution and to elaborate probability maps for REEs. The QRVs established for soils were the following (mg kg−1): La (27.21), Ce (57.26), Pr (10.49), Nd (24.29), Sm (4.75), Eu (0.90), Gd (4.22), Tb (0.82), Dy (1.54), Ho (0.38), Er (1.23), Yb (1.07), Lu (0.24), Y (10.65), and Sc (3.70). It was possible to draw attention to the Northwest and Southwest regions of the Rio Grande do Norte (RN) state, due to the formation of REE hotspots, indicated by Moran’s I, and a high tendency to exceed the QRVs, confirmed by the indicator kriging. The high background concentrations and geochemical patterns for REEs showed that a single QRV for each REE and the entire state can neglect specific environmental characteristics and misrepresent the natural geochemistry of the soil. Thus, specific QRVs were established to optimize the monitoring of natural REE values by identifying hotspot areas. The criteria established here may be useful for other groups of potentially toxic elements, provided that observations meet the requirements of the spatial autocorrelation and kriging analyses.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfaro, M. R., do Nascimento, C. W. A., Biondi, C. M., Silva, Y. J. A. B., Silva, Y. J. A. B., Aguiar Accioly, A. M., Montero, A., Ugarte, O. M., & Estevez, J. (2018). Rare-earth-element geochemistry in soils developed in different geological settings of Cuba. Catena, 162, 317–324. https://doi.org/10.1016/j.catena.2017.10.031.

    Article  CAS  Google Scholar 

  • Almeida Júnior, A. B. D., Nascimento, C. W. A. D., Biondi, C. M., Souza, A. P. D., & Barros, F. M. D. R. (2016). Background and reference values of metals in soils from Paraíba State, Brazil. Revista Brasileira de Ciência do Solo, 40. https://doi.org/10.1590/18069657rbcs20150122.

  • Angelim, L. A. D. A., Medeiros, V. C. D., & Nesi, J. D. R. (2006). Mapa geológico do estado do Rio Grande do Norte. CPRM/FAPERN, Recife, Projeto Geologia e Recursos Minerais do Estado do Rio Grande do Norte.

  • Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93–115.

    Article  Google Scholar 

  • Antunes, I. M. H. R., & Albuquerque, M. T. D. (2013). Using indicator kriging for the evaluation of arsenic potential contamination in an abandoned mining area (Portugal). Science of the Total Environment, 442, 545–552. https://doi.org/10.1016/j.scitotenv.2012.10.010.

    Article  CAS  Google Scholar 

  • Biondi, C. M., do Nascimento, C. W. A., Neta, A. D. B. F., & Ribeiro, M. R. (2011). Teores de Fe, Mn, Zn, Cu, Ni e Co em solos de referência de Pernambuco. Revista Brasileira de Ciência do Solo, 35(3).

  • Blinova, I., Lukjanova, A., Muna, M., Vija, H., & Kahru, A. (2018). Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans. Science of the Total Environment, 642, 1100–1107. https://doi.org/10.1016/j.scitotenv.2018.06.155.

    Article  CAS  Google Scholar 

  • BRASIL. Mistério da Agricultura (1968). Mapa exploratório reconhecimento de solos do Estado do Rio Grande do Norte. Recife, Sudene.

  • Brioschi, L., Steinmann, M., Lucot, E., Pierret, M. C., Stille, P., Prunier, J., & Badot, P. M. (2013). Transfer of rare earth elements (REE) from natural soil to plant systems: implications for the environmental availability of anthropogenic REE. Plant and Soil, 366(1-2), 143–163. https://doi.org/10.1007/s11104-012-1407-0.

    Article  CAS  Google Scholar 

  • Calabrese, E. J. (2013). Hormetic mechanisms. Critical Reviews in Toxicology, 43(7), 580–606. https://doi.org/10.3109/10408444.2013.808172.

    Article  CAS  Google Scholar 

  • Castorina, F., & Masi, U. (2015). Sr and Nd isotopes as tracers in pedogenic studies: evidence for Saharan dust contribution to the soils of Muravera (Sardinia, Italy). Geochemistry, 75(3), 301–315. https://doi.org/10.1016/j.chemer.2015.04.003.

    Article  CAS  Google Scholar 

  • CETESB – Companhia de Tecnologia de Saneamento Ambiental (2005). Decisão da Diretoria n° 195/2005. Valores orientadores para solos e águas subterrâneas do estado de São Paulo. 4p

  • Chakraborty, S., Man, T., Paulette, L., Deb, S., Li, B., Weindorf, D. C., & Frazier, M. (2017). Rapid assessment of smelter/mining soil contamination via portable X-ray fluorescence spectrometry and indicator kriging. Geoderma, 306, 108–119. https://doi.org/10.1016/j.geoderma.2017.07.003.

    Article  CAS  Google Scholar 

  • Chen, Y. (2013). New approaches for calculating Moran’s index of spatial autocorrelation. PLoS One, 8(7), e68336. https://doi.org/10.1371/journal.pone.0068336.

    Article  CAS  Google Scholar 

  • Conselho Nacional do Meio Ambiente - Conama. Resolução n° 420, de 28 de dez. de 2009. http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi = 620. Accessed 13 Dec 2017.

  • COPAM – Conselho Estadual de Política Ambiental. Deliberação Normativa Conjunta COPAM/CERH n° 02, de 08 de setembro de 2010. Republicação – Diário do Executivo – “Minas Gerais” – 29/12/2010. Disponível em http://www.siam.mg.gov.br/sla/download.pdf?idNorma = 14670 (Acessado em Jan 2016).

  • Dai, W., Zhao, K., Fu, W., Jiang, P., Li, Y., Zhang, C., Gielen, G., Gong, X., Li, Y., Wang, H., & Wu, J. (2018). Spatial variation of organic carbon density in topsoils of a typical subtropical forest, southeastern China. Catena, 167, 181–189. https://doi.org/10.1016/j.catena.2018.04.040.

    Article  CAS  Google Scholar 

  • de Graaf, S., Reijmer, J. J., Bertotti, G. V., Bezerra, F. H., Cazarin, C. L., Bisdom, K., & Vonhof, H. B. (2017). Fracturing and calcite cementation controlling fluid flow in the shallow-water carbonates of the Jandaíra Formation, Brazil. Marine and Petroleum Geology, 80, 382–393. https://doi.org/10.1016/j.marpetgeo.2016.12.014.

    Article  CAS  Google Scholar 

  • Diniz, M. T. M., & Oliveira, A. V. L. C. (2018). Mapeamento das unidades de paisagem do estado do Rio Grande do Norte, Brasil. Boletim Goiano de Geografia, 38.

  • Diniz, M. T. M., & Pereira, V. H. C. (2015). Climatologia do estado do Rio Grande do Norte, Brasil: Sistemas atmosféricos atuantes e mapeamento de tipos de clima. Boletim Goiano de Geografia, 35(3), 488–506.

    Google Scholar 

  • Donagema, G. K., de Campos, D. B., Calderano, S. B., Teixeira, W. G., & Viana, J. M. (2011). Manual de métodos de análise de solo. Rio de Janeiro: Embrapa Solos.

  • Ducci, D., Melo, M. T. C., Preziosi, E., Sellerino, M., Parrone, D., & Ribeiro, L. (2016). Combining natural background levels (NBLs) assessment with indicator kriging analysis to improve groundwater quality data interpretation and management. Science of the Total Environment, 569, 569–584. https://doi.org/10.1016/j.scitotenv.2016.06.184.

    Article  CAS  Google Scholar 

  • Feitosa, M. M., Silva, Y. J. A. B., Biondi, C. M., Alcantara, V. C., & Nascimento, C. W. A. (2020). Rare earth elements in rocks and soil profiles of a tropical volcanic archipelago in the Southern Atlantic. Catena, 194, 104674. https://doi.org/10.1016/j.catena.2020.104674.

  • Fu, W., Zhao, K., Zhang, C., Wu, J., & Tunney, H. (2016). Outlier identification of soil phosphorus and its implication for spatial structure modeling. Precision Agriculture, 17(2), 121–135. https://doi.org/10.1007/s11119-015-9411-z.

    Article  Google Scholar 

  • Fu, W., Li, X., Feng, Y., Feng, M., Peng, Z., Yu, H., & Lin, H. (2019). Chemical weathering of S-type granite and formation of rare earth element (REE)-rich regolith in South China: critical control of lithology. Chemical Geology, 520, 33–51. https://doi.org/10.1016/j.chemgeo.2019.05.006.

    Article  CAS  Google Scholar 

  • Fundação Estadual de Proteção Ambiental Henrique Luiz Roessler / RS - Fepam. Portaria Fepam n° 85/2014. Dispõe sobre o estabelecimento de valores de referência de qualidade (VRQ) dos solos para 09 (nove) elementos químicos presentes nas diferentes condições geomorfológicas / geológicas do Estado do Rio Grande do Sul. Porto Alegre; 2014. Disponível em: http://www.fepam.rs.gov.br/legislacao/arq/Portaria085-2014.pdf. Accessed 2 Apr 2018.

  • Gambogi, J. (2015). Rare earths: U.S. Geological Survey Mineral Commodity Summaries. p. 128–129. https://minerals.usgs.gov/minerals/pubs/ commodity/rare_earths/mcs-2015-raree.pdf. Accessed 24 May 2018.

  • Gao, Z., Fu, W., Zhang, M., Zhao, K., Tunney, H., & Guan, Y. (2016). Potentially hazardous metals contamination in soil-rice system and it’s spatial variation in Shengzhou City, China. Journal of Geochemical Exploration, 167, 62–69. https://doi.org/10.1016/j.gexplo.2016.05.006.

    Article  CAS  Google Scholar 

  • Gee, G. W., & Or, D. (2002). Particle-size analysis. In J. H. Dane & C. G. Topp (Eds.), Methods of soil analysis: physical methods (pp. 255-93). Soil Science Society of America.

  • Getis, A., & Ord, J. K. (2010). The analysis of spatial association by use of distance statistics. In L. Anselin & J. R. Sergio (Eds.), Perspectives on Spatial Data Analysis (pp. 127–145). Springer.

  • Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., & Sanganyado, E. (2018). Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of the Total Environment, 636, 299–313. https://doi.org/10.1016/j.scitotenv.2018.04.235.

    Article  CAS  Google Scholar 

  • Huo, X. N., Zhang, W. W., Sun, D. F., Li, H., Zhou, L. D., & Li, B. G. (2011). Spatial pattern analysis of heavy metals in Beijing agricultural soils based on spatial autocorrelation statistics. International Journal of Environmental Research and Public Health, 8(6), 2074–2089. https://doi.org/10.3390/ijerph8062074.

    Article  Google Scholar 

  • Huo, X. N., Li, H., Sun, D. F., Zhou, L. D., & Li, B. G. (2012). Combining geostatistics with Moran’s I analysis for mapping soil heavy metals in Beijing, China. International Journal of Environmental Research and Public Health, 9(3), 995–1017. https://doi.org/10.3390/ijerph9030995.

    Article  CAS  Google Scholar 

  • Kyere, V. N., Greve, K., Atiemo, S. M., Amoako, D., Aboh, I. J. K., & Cheabu, B. S. (2018). Contamination and health risk assessment of exposure to heavy metals in soils from informal e-waste recycling site in Ghana. Emerging Science Journal, 2(6), 428–436. https://doi.org/10.28991/esj-2018-01162.

    Article  Google Scholar 

  • Laveuf, C., & Cornu, S. (2009). A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma, 154(1-2), 1–12. https://doi.org/10.1016/j.geoderma.2009.10.002.

    Article  CAS  Google Scholar 

  • Li, W., Xu, B., Song, Q., Liu, X., Xu, J., & Brookes, P. C. (2014). The identification of ‘hotspots’ of heavy metal pollution in soil–rice systems at a regional scale in eastern China. Science of the Total Environment, 472, 407–420. https://doi.org/10.1016/j.scitotenv.2013.11.046.

    Article  CAS  Google Scholar 

  • Liankai, Z., Hongbing, J., Shijie, W., Gang, L., Xiuming, L., Xiao, W., QuocDinh, N., & DaiTrung, N. (2020). Geochemical implications of rare earth elements in Terra Rossa in Tropical Karst Area: a case study in Northern Vietnam. Applied Sciences, 10(3), 858. https://doi.org/10.3390/app10030858.

    Article  CAS  Google Scholar 

  • Lv, J., Liu, Y., Zhang, Z., & Dai, J. (2013). Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils. Journal of Hazardous Materials, 261, 387–397. https://doi.org/10.1016/j.jhazmat.2013.07.065.

    Article  CAS  Google Scholar 

  • Martín-García, J. M., Sánchez-Marañón, M., Calero, J., Aranda, V., Delgado, G., & Delgado, R. (2016). Iron oxides and rare earth elements in the clay fractions of a soil chronosequence in southern Spain. European Journal of Soil Science, 67(6), 749–762. https://doi.org/10.1111/ejss.12377.

    Article  CAS  Google Scholar 

  • Mattson, M. P. (2008). Hormesis defined. Ageing Research Reviews, 7(1), 1–7. https://doi.org/10.1016/j.arr.2007.08.007.

    Article  CAS  Google Scholar 

  • Medeiros, V. C., Nesi, J. R., & Nascimento, M. A. L. (2010). Recursos minerais. In P. A. S. Pfaltzgraff & F. S. M. Torres (Eds.), Geodiversidade do estado do Rio Grande do Norte - Programa geologia do Brasil: levantamento da geodiversidade (pp. 47–66). Rio de Janeiro.

  • National Institute OF Standards and Technology - NIST. Standard Reference Materials -SRM 2709, 2710 and 2711 Addendum Issue Date: 18 January 2002.

  • Nguyen, T. T., & Vu, T. D. (2019). Identification of multivariate geochemical anomalies using spatial autocorrelation analysis and robust statistics. Ore Geology Reviews, 102985, 102985. https://doi.org/10.1016/j.oregeorev.2019.102985.

    Article  Google Scholar 

  • Noli, F., & Tsamos, P. (2016). Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Science of the Total Environment, 563, 377–385. https://doi.org/10.1016/j.scitotenv.2016.04.098.

    Article  CAS  Google Scholar 

  • Oliveira, J. D., Manso, C. L. D. C., & Andrade, E. D. J. (2014). Distribuição dos equinoides na Formação Jandaíra. Brazilian Journal of Geology, 44(4), 597–606. https://doi.org/10.5327/Z23174889201400040006.

    Article  Google Scholar 

  • Oliver, M. A., & Webster, R. (2014). A tutorial guide to geostatistics: computing and modelling variograms and kriging. Catena, 113, 56–69. https://doi.org/10.1016/j.catena.2013.09.006.

    Article  Google Scholar 

  • Paye, H. S., de Mello, J. W., de Magalhães Mascarenhas, G. R. L., & Gasparon, M. (2016). Distribution and fractionation of the rare earth elements in Brazilian soils. Journal of Geochemical Exploration, 161, 27–41. https://doi.org/10.1016/j.gexplo.2015.09.003.

    Article  CAS  Google Scholar 

  • Pédrot, M., Dia, A., Davranche, M., & Gruau, G. (2015). Upper soil horizons control the rare earth element patterns in shallow groundwater. Geoderma, 239, 84–96. https://doi.org/10.1016/j.geoderma.2014.09.023.

    Article  CAS  Google Scholar 

  • Pereira, B. A., da Silva, Y. J. A. B., do Nascimento, C. W. A., da Silva, Y. J. A. B., Nascimento, R. C., Boechat, C. L., Barbosa, S. R., & Singh, V. P. (2019). Watershed scale assessment of rare earth elements in soils derived from sedimentary rocks. Environmental Monitoring and Assessment, 191(8), 514. https://doi.org/10.1007/s10661-019-7658-y.

    Article  CAS  Google Scholar 

  • Preston, W., Araújo do Nascimento, C. W., Miranda Biondi, C., Souza Junior, V. S., Ramos da Silva, W., & Alves Ferreira, H. (2014). Valores de referência de qualidade para metais pesados em solos do Rio Grande do Norte. Revista Brasileira de Ciência do Solo, 38(3), 1028–1037. https://doi.org/10.1590/S0100-06832014000300035.

    Article  CAS  Google Scholar 

  • Richer-de-Forges, A. C., Saby, N. P., Mulder, V. L., Laroche, B., & Arrouays, D. (2017). Probability mapping of iron pan presence in sandy podzols in South-West France, using digital soil mapping. Geoderma Regional, 9, 39–46. https://doi.org/10.1016/j.geodrs.2016.12.005.

    Article  Google Scholar 

  • Silva, Y. J. A. B., Nascimento, C. W. A. D., Silva, Y. J. A. B., Biondi, C. M., & Silva, C. M. C. A. C. (2016). Rare earth element concentrations in Brazilian benchmark soils. Revista Brasileira de Ciência do Solo, 40. https://doi.org/10.1590/18069657rbcs20150413.

  • Silva, Y. J. A. B., Araújo do Nascimento, C. W., Biondi, C. M., van Straaten, P., & da Silva, Y. J. A. B. (2018). Rare earth element geochemistry during weathering of S-type granites from dry to humid climates of Brazil. Journal of Plant Nutrition and Soil Science, 181(6), 938–953. https://doi.org/10.1002/jpln.201700440.

    Article  CAS  Google Scholar 

  • Silva, C. M. C. A. C., Barbosa, R. S., Nascimento, C. W. A. D., Silva, Y. J. A. B., & Silva, Y. J. A. B. (2018a). Geochemistry and spatial variability of rare earth elements in soils under different geological and climate patterns of the Brazilian Northeast. Revista Brasileira de Ciência do Solo, 42. https://doi.org/10.1590/18069657rbcs20170342.

  • Silva, Y. J. A. B., do Nascimento, C. W. A., da Silva, Y. J. A. B., Amorim, F. F., Cantalice, J. R. B., Singh, V. P., & Collins, A. L. (2018b). Bed and suspended sediment-associated rare earth element concentrations and fluxes in a polluted Brazilian river system. Environmental Science and Pollution Research, 25(34), 34426–34437. https://doi.org/10.1007/s11356-018-3357-4.

    Article  CAS  Google Scholar 

  • Tepanosyan, G., Sahakyan, L., Zhang, C., & Saghatelyan, A. (2019). The application of Local Moran’s I to identify spatial clusters and hot spots of Pb, Mo and Ti in urban soils of Yerevan. Applied Geochemistry, 104, 116–123. https://doi.org/10.1016/j.apgeochem.2019.03.022.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency–USEPA (1998). Method 3051A: microwave assisted acid digestion of sediments, sludges, soils, and oils. SW-846: test methods for evaluation of solid waste physical and chemical methods, Office of Solid Waste, US.

  • Vermeire, M. L., Cornu, S., Fekiacova, Z., Detienne, M., Delvaux, B., & Cornélis, J. T. (2016). Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils. Chemical Geology, 446, 163–174. https://doi.org/10.1016/j.chemgeo.2016.06.008.

    Article  CAS  Google Scholar 

  • Wang, T., Kang, F., Cheng, X., Han, H., Bai, Y., & Ma, J. (2017). Spatial variability of organic carbon and total nitrogen in the soils of a subalpine forested catchment at Mt. Taiyue, China. Catena, 155, 41–52. https://doi.org/10.1016/j.catena.2017.03.004.

    Article  CAS  Google Scholar 

  • Wu, S., Zhou, S., Bao, H., Chen, D., Wang, C., Li, B., Tong, G., Yuan, Y., & Xu, B. (2019). Improving risk management by using the spatial interaction relationship of heavy metals and PAHs in urban soil. Journal of Hazardous Materials, 364, 108–116. https://doi.org/10.1016/j.jhazmat.2018.09.094.

    Article  CAS  Google Scholar 

  • Xiao, G., Hu, Y., Li, N., & Yang, D. (2018). Spatial autocorrelation analysis of monitoring data of heavy metals in rice in China. Food Control, 89, 32–37. https://doi.org/10.1016/j.foodcont.2018.01.032.

    Article  CAS  Google Scholar 

  • Xu, N., Morgan, B., & Rate, A. W. (2018). From source to sink: rare-earth elements trace the legacy of sulfuric dredge spoils on estuarine sediments. Science of the Total Environment, 637, 1537–1549. https://doi.org/10.1016/j.scitotenv.2018.04.398.

    Article  CAS  Google Scholar 

  • Yamasaki, S. I., Takeda, A., Nunohara, K., & Tsuchiya, N. (2013). Red soils derived from limestone contain higher amounts of trace elements than those derived from various other parent materials. Soil Science and Plant Nutrition, 59(5), 692–699. https://doi.org/10.1080/00380768.2013.822301.

    Article  CAS  Google Scholar 

  • Yan, W., Mahmood, Q., Peng, D., Fu, W., Chen, T., Wang, Y., Li, S., Chen, J., & Liu, D. (2015). The spatial distribution pattern of heavy metals and risk assessment of moso bamboo forest soil around lead–zinc mine in Southeastern China. Soil and Tillage Research, 153, 120–130. https://doi.org/10.1016/j.still.2015.05.013.

    Article  Google Scholar 

  • Yuan, Y., Cave, M., & Zhang, C. (2018). Using Local Moran’s I to identify contamination hotspots of rare earth elements in urban soils of London. Applied Geochemistry, 88, 167–178. https://doi.org/10.1016/j.apgeochem.2017.07.011.

    Article  CAS  Google Scholar 

  • Zhang, C., Luo, L., Xu, W., & Ledwith, V. (2008). Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Science of the Total Environment, 398(1-3), 212–221. https://doi.org/10.1016/j.scitotenv.2008.03.011.

    Article  CAS  Google Scholar 

  • Zhang, Q., Han, G., Liu, M., & Wang, L. (2019). Geochemical characteristics of rare earth elements in soils from Puding Karst Critical Zone Observatory, Southwest China. Sustainability, 11(18), 4963. https://doi.org/10.3390/su11184963.

    Article  CAS  Google Scholar 

  • Zhao, K. L., Fu, W. J., Liu, X. M., Zhang, X. M., Ye, Z. Q., & Xu, J. M. (2014). Spatial variations of concentrations of copper and its speciation in the soil-rice system in Wenling of southeastern China. Environmental Science and Pollution Research, 21, 7165–7176. https://doi.org/10.1007/s11356-014-2638-9.

    Article  CAS  Google Scholar 

  • Zhao, K., Zhang, L., Dong, J., Wu, J., Ye, Z., Zhao, W., Ding, L., & Fu, W. (2020). Risk assessment, spatial patterns and source apportionment of soil heavy metals in a typical Chinese hickory plantation region of southeastern China. Catena, 360, 114011. https://doi.org/10.1016/j.geoderma.2019.114011.

    Article  CAS  Google Scholar 

  • Zhuang, M., Zhao, J., Li, S., Liu, D., Wang, K., & Xiao, P. (2017). Concentrations and health risk assessment of rare earth elements in vegetables from mining area in Shandong, China. Chemosphere, 168, 578–582. https://doi.org/10.1016/j.chemosphere.2016.11.023.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Jacques Agra Bezerra da Silva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, C.M.C.A.C., Nascimento, R.C., da Silva, Y.J.A.B. et al. Combining geospatial analyses to optimize quality reference values of rare earth elements in soils. Environ Monit Assess 192, 453 (2020). https://doi.org/10.1007/s10661-020-08406-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08406-y

Keywords

Navigation