Skip to main content
Log in

Outlier identification of soil phosphorus and its implication for spatial structure modeling

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Outliers are classified as global outliers and spatial outliers. Up to now, there is little information about the outliers especially the spatial outliers and their influence on the spatial structure modeling of soil properties. A total of 537 soil samples were collected based on a 30 × 30 m grid in a permanent dairy farm in southeast Ireland. Graphic methods of histogram and box plot combined with Moran’s I were applied to detect the outliers of soil phosphorus (P). Sixteen outliers (5 global outliers and 11 spatial outliers) of soil P were found in the study area. Compared to the raw data, the data with global outliers excluded always had the larger global Moran’s I value indicating a stronger spatial autocorrelation. Clear spatial clusters (High–High and Low–Low clusters) were observed based on local Moran’s I. The High–High spatial clusters were located around the main farm yard and near the traffic route due to more intensive management by farmers. The Low–Low spatial clusters were mainly close to the river. For these areas, P fertilizer or slurry should be applied for healthy grass growth. The dataset with outliers excluded had a reliable semi-variogram model with a low nugget/sill ratio (32.4 %), which was closed to its corresponding transformed data (30.5 %). The cross-validation results revealed that the dataset without outliers had the strongest linear regression model (r = 0.768), indicating that the outliers played an important role in the spatial structure modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andronikov, S. V., Davidson, D. A., & Spiers, R. B. (2000). Variability in contamination by heavy metals: sampling implications. Water, Air Soil Pollution, 120, 29–45.

    Article  CAS  Google Scholar 

  • Anselin, L. (1995). Local indicators of spatial association-LISA. Geographical Analysis, 27, 93–115.

    Article  Google Scholar 

  • Box, G. E. P., & Cox, D. R. (1962). An analysis of transformations. Journal of the Royal Statistical Society: Series B, 26(2), 211–252.

    Google Scholar 

  • Brody, S. D., Highfield, W. E., & Thornton, S. (2006). Planning at the urban fringe: an examination of the factors influencing nonconforming development patterns in southern Florida. Environment and Planning B-Planning & Design, 33, 75–96.

    Article  Google Scholar 

  • Cambardella, C. A., Moorman, A. T., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., et al. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58, 1501–1511.

    Article  Google Scholar 

  • Clark, I., & Harper, W. V. (2000). Practical geostatistics 2000. Columbus, OH: Ecosse North America Llc.

    Google Scholar 

  • Cliff, A. D., & Ord, J. K. (1981). Spatial processes: Models and applications. London: Pion Limited.

    Google Scholar 

  • Coulter, B. S., & Lalor, S. (2008). Nutrient and trace element advice for productive agricultural crops (3rd ed.). Wexford: Teagasc, Johnstown Castle.

    Google Scholar 

  • Cressie, N. (1993). Statistics for spatial data (revised edition). New York: Wiley.

    Google Scholar 

  • European Communities (2006) Good agricultural practice for protection of waters) Regulations 2006. S.I. No. 378. Government Publications, Dublin 2. http://www.environ.ie/en/Environment/Water/WaterQuality/NitratesDirective/ Accessed 11 Jan 2014

  • Everitt, B. S. (2002). The cambridge dictionary of statistics (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • FAO. (1974). Soil map of the world. 1:5,000,000 (Vol. 1–10). Paris: Food and Agriculture Organisation of the United Nations and UNESCO.

    Google Scholar 

  • Fu, W. J., Tunney, H., & Zhang, C. S. (2010). Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil & Tillage Research, 106, 185–193.

    Article  Google Scholar 

  • Fu, W. J., Zhao, K. L., Tunney, H., & Zhang, C. S. (2013). Using GIS and geostatistics to optimize soil phosphorus and magnesium sampling in temperate grassland. Soil Science, 178, 240–247.

    Article  CAS  Google Scholar 

  • Fu, W. J., Zhao, K., Zhang, C. S., & Tunney, H. (2011). Using Moran’s I and geostatistics to identify spatial patterns of soil nutrients in two different long termphosphorus application plots. Journal of Plant Nutrition and Soil Science, 174, 785–798.

    Article  CAS  Google Scholar 

  • Gallardo, A., & Paramá, R. (2007). Spatial variability of soil elements in two plant communities of NW Spain. Geoderma, 139, 199–208.

    Article  CAS  Google Scholar 

  • Geary, R. C. (1954). The contiguity ratio and statistical mapping. The Incorporated Statistician, 5, 115–145.

    Article  Google Scholar 

  • Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24, 189–206.

    Article  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.

    Google Scholar 

  • Huo, X. N., Li, H., Sun, D. F., Zhou, L. D., & Li, B. G. (2012). Combining geostatistics with Moran’s I analysis for mapping soil heavy metals in Beijing, China. International Journal of Environmental Research and Public Health, 9, 995–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishioka, F., Kurihara, K., Suito, H., Horikawa, Y., & Ono, Y. (2007). Detection of hotspots for three-dimensional spatial data and its application to environmental pollution data. Journal of Environmental Science for Sustainable Society, 1, 15–24.

    Article  Google Scholar 

  • Jeweel, P. L., Kauferle, D., Gusewell, S., Berry, N. R., Kreuzer, M., & Edwards, P. J. (2007). Redistribution of phosphorus by cattle on a traditional mountain pasture in the Alps. Agriculture, Ecosystem & Environment, 122, 377–386.

    Article  Google Scholar 

  • Kerry, R., & Oliver, M. A. (2007). Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood. Geoderma, 140, 383–396.

    Article  Google Scholar 

  • Lalor, G. C., & Zhang, C. S. (2001). Multivariate outlier detection and remediation in geochemical databases. Science of the Total Environment, 281, 99–109.

    Article  CAS  PubMed  Google Scholar 

  • Li, W. L., Xu, B. B., Song, Q. J., Liu, X. M., Xu, J. M., & Brookes, P. C. (2014). The identification of ‘hotspots’ of heavy metal pollution in soil–rice systems at a regional scale in eastern China. Science of the Total Environment, 472, 407–420.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, S., Jordan, C., & Bailey, J. S. (2009). Within and between-field spatial variation in soil phosphorus in permanent grassland. Precision Agriculture, 10, 262–276.

    Article  Google Scholar 

  • McGrath, D., & Zhang, C. S. (2003). Spatial distribution of soil organic carbon concentrations in grassland of Ireland. Applied Geochemistry, 18, 1629–1639.

    Article  CAS  Google Scholar 

  • Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37, 17–23.

    Article  CAS  PubMed  Google Scholar 

  • Norusis, M. (2003). SPSS 12.0 Statistical procedures companion. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Overmars, K. P., de Koning, G. H. J., & Veldkamp, A. (2003). Spatial autocorrelation in multi-scale land use models. Ecological Modeiling, 164, 257–270.

    Article  Google Scholar 

  • Peech, M., & English, L. (1944). Rapid microchemical tests. Soil Science, 57, 167–193.

    Article  CAS  Google Scholar 

  • Sadeghi, A., Graff, C. D., Starr, J., Mccarty, G., Codling, E., & Sefton, K. (2006). Spatial variability of soil phosphorous levels before and after poultry litter application. Soil Science, 171, 850–857.

    Article  CAS  Google Scholar 

  • Styles, D., Donohue, I., Coxon, C., & Irvine, K. (2006). Linking soil phosphorus to water quality in the Mask catchment of western Ireland through the analysis of moist soil samples. Agriculture Ecosystem & Environment, 112, 300–312.

    Article  CAS  Google Scholar 

  • Tu, J., & Xia, Z. G. (2008). Examining spatially varying relationships between land use and water quality using geographically weighted regression I: Model design and evaluation. Science of the Total Environment, 407, 358–378.

    Article  CAS  PubMed  Google Scholar 

  • Tunney, H. (2002). Phosphorus needs of grassland soils and loss to water. In E. Walling & A. J. Horowitz (Eds.), Agricultural effects on ground and surface waters: Research at the edge of science and society (Vol. 273, pp. 63–69). Wallingford: IAHS Publ.

    Google Scholar 

  • Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists. Chichester: Wiley.

    Google Scholar 

  • Zhang, C. S., Luo, L., Xu, W., & Ledwith, V. (2008). Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Science of the Total Environment, 398, 212–221.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C. S., Manheim, F. T., Hinde, J., & Grossman, J. N. (2005). Statistical characterization of a large geochemical database and effect of sample size. Applied Geochemistry, 20, 1857–1874.

    Article  CAS  Google Scholar 

  • Zhang, C. S., & McGrath, D. (2004). Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma, 119, 261–275.

    Article  CAS  Google Scholar 

  • Zhang, C. S., & Selinus, O. (1998). Statistics and GIS in environmental geochemistry-some problems and solutions. Journal of Geochemical Exploration, 64, 339–354.

    Article  CAS  Google Scholar 

  • Zhang, C. S., Tang, Y., Luo, L., & Xu, W. L. (2009). Outlier identification and visualization for Pb concentrations in urban soils and its implications for identification of potential contaminated land. Environmental Pollution, 157, 3083–3090.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, K. L., Fu, W. J., Liu, X. M., Huang, D. L., Zhang, C. S., Ye, Z. Q., et al. (2014). Spatial variations of concentrations of Copper and its speciation in the soil-rice system in Wenling of southeastern China. Environmental Science and Pollution Research, 21, 7165–7176.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, K. L., Liu, X. M., Xu, J. M., & Selim, H. M. (2010). Heavy metal contaminations in a soil–rice system: Identification of spatial dependence in relation to soil properties of paddy fields. Journal of Hazardous Materials, 181, 778–787.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Open Project of Provincial Priority First Level Discipline of Forestry (KF201333), the National Natural Science Foundation of China (No. 41201538, 41201323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keli Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, W., Zhao, K., Zhang, C. et al. Outlier identification of soil phosphorus and its implication for spatial structure modeling. Precision Agric 17, 121–135 (2016). https://doi.org/10.1007/s11119-015-9411-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-015-9411-z

Keywords

Navigation