Skip to main content
Log in

An integrated measurement of six response performance indicators for lead ion-selective electrodes and application

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A heavy metal ion-selective electrode (ISE) with highly multiple response performances, rather than a high single response performance, is needed urgently for in situ, real-time environmental monitoring. In this study, we present an integrated measurement of six response performance variables such as the response slope, selectivity, dynamical range, detection limit, response time, and lifetime. They are selected and used as the indicators of the quality assessment for Pb2+-ISEs. The measurement, named as electrode comprehensive quality index (IECQ), is a single number for a given ISE. The comprehensive qualities of 114 Pb2+-ISEs reported in the literature were evaluated through the index method. Twenty-one Pb2+-ISEs-based polymer membrane with top 3 IECQ values for seven different properties have been recommended by evaluating and screening of the electrodes. Five Pb2+-ISEs-based polymer membrane with the best single response performance were also provided. The recommended Pb2+-ISEs, along with the corresponding Pb2+-ISEs with the miniaturized configurations, will provide helpful guideline for the application of Pb2+-ISE with highly multiple response performances in real-time environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abu-Shawish, H. M. (2009). A mercury(II) selective sensor based on N,N-bis(salicylaldehyde)-phenylenediamine as neutral carrier for potentiometric analysis in water samples. Journal of Hazardous Materials, 167, 602–608.

    CAS  Google Scholar 

  • Bakker, E., & Pretsch, E. (2001). Potentiometry at trace levels. Trends in Analytical Chemistry, 20, 11–19.

    CAS  Google Scholar 

  • Barzegar, M., Mousavi, M. F., Khajehsharifi, H., Shamsipur, M., & Sharghi, H. (2005). Application of some recently synthesized 9, 10-anthraquinone derivatives as new class of ionophores responsive to lead (II) ion. IEEE Sensors Journal, 5, 392–397.

    CAS  Google Scholar 

  • Braungardt, C. B., Achterberg, E. P., Axelsson, B., Buffle, J., Graziottin, F., Howell, K. A., Illuminati, S., Scarponi, G., Tappin, A. D., Tercier-Waeber, M.-L., & Turner, D. (2009). Analysis of dissolved metal fractions in coastal waters: an inter-comparison of five voltammetric in situ profiling (VIP) systems. Marine Chemistry, 114, 47–55.

    CAS  Google Scholar 

  • Buffle, J., Altmann, R. S., Filella, M., & Tessier, A. (1990). Complexation by natural heterogeneous compounds: Site occupation distribution functions, a normalized description of metal complexation. Geochimica et Cosmochimica Acta, 54, 1535–1553.

    CAS  Google Scholar 

  • Buhlmann, P., & Umezawa, Y. (2000). Lifetime of ion-selective electrodes based on charged ionophores. Analytical Chemistry, 72, 1843–1845.

    CAS  Google Scholar 

  • Ceresa, A., Bakker, E., Hattendorf, B., Gunther, D., & Pretsch, E. (2001). Potentiometric polymeric membrane electrodes for measurement of environmental samples at trace levels: new requirements for selectivities and measuring protocols, and comparison with ICPMS. Analytical Chemistry, 73, 343–351.

    CAS  Google Scholar 

  • Cude, C. G. (2001). Oregon water quality index a tool for evaluating water quality management effectiveness. Journal of the American Water Resources Association, 37, 125–137.

    CAS  Google Scholar 

  • De Marco, R., Clarke, G., & Pejcic, B. (2007). Ion-selective electrode potentiometry in environmental analysis. Electroanalysis, 19, 1987–2001.

    Google Scholar 

  • Dobbie, M. J., & Dail, D. (2013). Robustness and sensitivity of weighting and aggregation in constructing composite indices. Ecological Indicators, 29, 270–277.

    Google Scholar 

  • Ellison, S. L. R., & Williams, A. (2012). EURACHEM/CITAC Guide:Quantifying uncertainty in analytical measurement (3rd ed.pp. 26–27) QUAM:2012.P1.(ISBN 978–0–948926-30-3).

    Google Scholar 

  • Gorai, A. K., Kanchan, Upadhyay, A., Tuluri, F., Goyal, P., & Tchounwou, P. B. (2015). An innovative approach for determination of air quality health index. Science of the Total Environment, 533, 495–505.

    CAS  Google Scholar 

  • Guilbault, G. G., Durst, R. A., Frant, M. S., et al. (1976). Recommendations for nomenclature of ion-selective electrodes. Pure and Applied Chemistry, 48, 127–132.

    Google Scholar 

  • Gumpu, M. B., Sethuraman, S., Krishnan, U. M., & Rayappan, J. B. B. (2015). A review on detection of heavy metal ions in water – an electrochemical approach. Sensors and Actuators B: Chemical, 213, 515–533.

    CAS  Google Scholar 

  • Gupta, K. C., & D’Arc, M. J. (2001). Lead (II) ion selective electrodes based on diphenylmethyl- N-phenylhydroxamic acid ionophore in cyanocopolymer matrix. IEEE Sensors Journal, 1, 275–282.

    Google Scholar 

  • Gupta, V. K., Ganjali, M. R., Norouzi, P., Khani, H., Nayak, A., & Agarwal, S. (2011). Electrochemical analysis of some toxic metals by ion-selective electrodes. Critical Reviews in Analytical Chemistry, 41, 282–313.

    CAS  Google Scholar 

  • Guzinski, M., Lisak, G., Kupis, J., Jasinski, A., & Bochenska, M. (2013). Lead(II)-selective ionophores for ion-selective electrodes: a review. AnalyticaChimica Acta, 791, 1–12.

    CAS  Google Scholar 

  • Hanrahan, G., Pati, D. G., & Wang, J. (2004). Electrochemical sensors for environmental monitoring: design, development and applications. Journal of Environmental Monitoring, 6, 657–664.

    CAS  Google Scholar 

  • Inamuddin, & Alam, M. M. (2008). Studies on the preparation and analytical applications of various metal ion-selective membrane electrodes based on polymeric, inorganic and composite materials—a review. Journal Macromolecular Science, Part A, 45, 1084–1101.

    CAS  Google Scholar 

  • Inamuddin, Rangreez, T. A., Naushad, M., & Al-Ahmad, A. (2015). Synthesis and characterisation of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) Zr(IV) monothiophosphate composite cation exchanger: analytical application as lead ion selective membrane electrode. International Journal of Environmental Analytical Chemistry, 95, 312–323

  • Karami, H., Mousavi, M. F., & Shamsipur, M. (2003). Flow injection potentiometry by a new coated graphite ion-selective electrode for the determination of Pb2+. Talanta, 60, 775–786.

    CAS  Google Scholar 

  • Khan, A. A., & Baig, U. (2012). Electrically conductive membrane of polyaniline–titanium(IV) phosphate cation exchange nanocomposite: applicable for detection of Pb(II) using its ion-selective electrode. Journal of Industrial and Engineering Chemistry, 18, 1937–1944.

    CAS  Google Scholar 

  • Khan, A. A., Khan, M. Q., & Shaheen, S. (2016). Synthesis, characterization, and electroanalytical studies of Pb2+-selective polypyrrole-Zr(IV) phosphate ion exchange membrane. Journal of Solid State Electrochemistry, 20, 2079–2091.

    Google Scholar 

  • Lindner, E., Toth, K., & Pungor, E. (1984). Lead-selective neutral carrier based liquid membrane electrode. Analytical Chemistry, 56, 1127–1131.

    CAS  Google Scholar 

  • Mary-Lou, T.-W., & Martial, T. (2008). Remote in situ voltammetric techniques to characterize the biogeochemical cycling of trace metals in aquatic systems. Journal of Environmental Monitoring, 10, 30–54.

    Google Scholar 

  • Namour, P., Lepot, M., & Jaffrezic-Renault, N. (2010). Recent trends in monitoring of European water framework directive priority substances using micro-sensors: a 2007–2009 review. Sensors, 10, 7947–7978.

    Google Scholar 

  • Oesch, U., & Simmon, W. (1980). Lifetime of neutral carrier based ion-selective liquid-membrane electrodes. Analytical Chemistry, 52, 692–700.

    CAS  Google Scholar 

  • Parra, E. J., Blondeau, P., Crespo, G. A., & Xavier Rius, F. (2011). An effective nanostructured assembly for ion-selective electrodes. An ionophore covalently linked to carbon nanotubes for Pb2+ determination. Chemical Communications, 47, 2438–2440.

    CAS  Google Scholar 

  • Sanchez, J., & del Velle, M. (2001). A new potentiometric photocurable membrane selective to anionic surfactants. Electroanalysis, 13, 471–476.

    CAS  Google Scholar 

  • Sardohan-Koseoglu, T., Kir, E., & Dede, B. (2015). Preparation and analytical application of the novel Hg(II)-selective membrane electrodes based on oxime compounds. Journal of Colloid and Interface Science, 444, 17–23.

    CAS  Google Scholar 

  • Singh, A., Sharma, R. K., Agrawal, M., & Marsha, F. M. (2010). Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food and Chemical Toxicology, 48, 611–619.

    CAS  Google Scholar 

  • Slaveykova, V. I., Wilkinson, K. J., Ceresa, A., & Pretsch, E. (2003). Role of fulvic acid on lead bioaccumulation by Chlorella kesslerii. Environmental Science & Technology, 37, 1114–1121.

    CAS  Google Scholar 

  • Sun, X. (2003). A new evaluation on comprehensive quality of ion-selective electrode and its application in development of doxycycline-selective PVC membrane electrode. Journal of Instrumental Analysis, 22, 1–4 (in Chinese).

    Google Scholar 

  • Sun, X. X., Xu, M. H., Sun, C. J., & Aboul-Enein, H. Y. (2007). Weighting factor in calculation of comprehensive quality index and optimization of PVC membrane composition for ion selective electrode. Instrumentation Science and Technology, 35, 469–479.

    Google Scholar 

  • Sun, L., Sun, C., & Sun, X. (2016). Screening highly selective ionophores for heavy metal ion-selective electrodes and potentiometric sensors. Electrochimica Acta, 220, 690–698.

    CAS  Google Scholar 

  • Sunda, W., & Guillard, R. R. L. (1976). The relationship between cupric ion activity and the toxicity of copper to phytoplankton. Journal of Marine Research, 34, 511–529.

    CAS  Google Scholar 

  • Tang, X., Wang, P. Y., & Buchter, G. (2018). Ion-selective electrodes for detection of lead (II) in drinking water: a mini-review. Environments, 5, 95.

    Google Scholar 

  • Tutulea-Anastasiu, M. D., Wilson, D., del Valle, M., Schreiner, C. M., & Cretescu, I. (2013). A solid-contact ion selective electrode for copper(II) using a succinimide derivative as ionophore. Sensors, 13, 4367–4377.

    CAS  Google Scholar 

  • Tyagi, S., Agarwal, H., & Ikram, S. (2009). Application of calixarene ionophores in PVC-based ion selective electrodes for heavy metal detection. The IUP Journal of Chemistry, II, 68.

    Google Scholar 

  • Umezawa, Y. K., Umezawa, K., & Sato, H. (1995). Selectivity coefficients for ion-selective electrodes: recommendation methods for reporting KA, B POT values. Pure and Applied Chemistry, 67, 507–518.

    Google Scholar 

  • Xie, L., Qin, Y., & Chen, H.-Y. (2013). Preparation of solid contact potentiometric sensors with self-plasticizing triblock polymer and ionic liquid-polymer composites. Sensors and Actuators B, 186, 321–326.

    CAS  Google Scholar 

  • Yu, P., Liu, S., Zhang, L., Li, Q., & Zhou, D. (2018). Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China. Science of the Total Environment, 616, 564–571.

    Google Scholar 

  • Zachara, J. E., Toczyłowska, R., Pokrop, R., Zagórska, M., Dybko, A., & Wróblewski, W. (2004). Miniaturised all-solid-state potentiometric ion sensors based on PVC-membranes containing conducting polymers. Sensors and Actuators B, 101, 207–212.

    CAS  Google Scholar 

  • Zahran, E. M., New, A., Gavalas, V., & Bachas, L. G. (2014). Polymeric plasticizer extends the lifetime of PVC-membrane ion-selective electrodes. Analyst, 139, 757–763.

    CAS  Google Scholar 

  • Zareh, M. M., Ghoneim, A. K., & Abd El-Aziz, M. H. (2001). Effect of presence of 18-crown-6 on the response of 1-pyrrolidine dicarbodithioate-based lead selective electrode. Talanta, 54, 1049–1057.

    CAS  Google Scholar 

Download references

Funding

This work was partially supported by the Summit of the Six Top Talents Program in Jiangsu Province (2012-SWYY-030 and 2017-SWYY-081) and the foundation of Jiangsu Province educational committee (16KJB180031) (L.Sun).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianxiang Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

ESM 2

(DOCX 46 kb)

ESM 3

(DOC 31 kb)

ESM 4

(DOC 31 kb)

ESM 5

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Sun, C. & Sun, X. An integrated measurement of six response performance indicators for lead ion-selective electrodes and application. Environ Monit Assess 191, 744 (2019). https://doi.org/10.1007/s10661-019-7908-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7908-z

Keywords

Navigation