Skip to main content

Recent Perspective and Applications of Electrode Materials for Electrochemical Sensing of Lead Ions

  • Conference paper
  • First Online:
Recent Trends in Electrochemical Science and Technology

Abstract

Lead is an inorganic element that is useful and also highly toxic and non-biodegradable. The poisonous effect of lead ions has been considered a significant public health disease, particularly in developing countries. Several techniques and public health measures have been undertaken to inhibit lead exposure; lead exposure is still continuously reported. This review paper provides recent updates describing the health effects of lead exposure and the methods for detecting lead in potable water. The increment of lead ions into water attracts attention due to its catastrophic impact on living organisms and the environment. The lead ions in water can be significantly detected using the electrochemical approach. The present review reports the details of the materials used for electrode design and its application to determine lead ions in water. The recent significant perspective, achievements, and challenges in sensing lead ions are presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hou H, Zeinu KM, Gao S, Liu B, Yang J, Hu J (2018) Recent advances and perspective on design and synthesis of electrode materials for electrochemical sensing of heavy metals. Wiley, energy & environmental material, pp 113–131. https://doi.org/10.1002/eem2.12011

  2. Buledi JA, Amin S, Haider SI, Bhanger MI, Solangi AR (2020) A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-07865-7

    Article  Google Scholar 

  3. Guan J, Fang Y, Zhang T, Wang L, Zhu H, Du M, Zhang M (2019) Kelp-derived activated porous carbon for the detection of heavy metal ions via square wave anodic stripping voltammetry. Electro Catal 11:59–67. https://doi.org/10.1007/s12678-019-00568-9

    Article  CAS  Google Scholar 

  4. Wani AL, Ara A, Usmani JA (2015) Lead toxicity: a review. Interdiscip Toxicol 8(2):55–64. https://doi.org/10.1515/intox-2015-0009

    Article  CAS  Google Scholar 

  5. Dutta S, Strack G, Kurup P (2018) Gold nanostar electrodes for heavy metal detection. Sens Actuators B Chem 281:383–391. https://doi.org/10.1016/j.snb.2018.10.111

    Article  CAS  Google Scholar 

  6. Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5(2):47–58. https://doi.org/10.2478/v10102-012-0009-2

    Article  CAS  Google Scholar 

  7. Xie Y, Zhao S, Ye H, Yuan J, Song P, Hu S (2015) Graphene/CeO2 hybrid materials for the simultaneous electrochemical detection of cadmium (II), lead (II), copper (II), and mercury (II). JEAC 757:235–242. https://doi.org/10.1016/j.jelechem.2015.09.043

    Article  CAS  Google Scholar 

  8. Berge J, Boelens R, Vos J (2020) How the European citizens’ initiative ‘water and sanitation is a human right!’ Changed EU discourse on water services provision. Utr Law Rev 16(2):48–59. https://doi.org/10.36633/ulr.568

    Article  Google Scholar 

  9. Crawford MD, Morris JN (1967) Lead in drinking water. Lancet 290(7525):1087–1088. https://doi.org/10.1016/s0140-6736(67)90364-9

    Article  Google Scholar 

  10. Sayato Y (1989) WHO guidelines for drinking-water quality. Eisei kagaku 35(5):307–312. https://doi.org/10.1248/jhs1956.35.307

    Article  Google Scholar 

  11. Ferrari AGM, Carrington P, Neale SJR, C. E. Banks CE, (2020) Recent advances in portable heavy metal electrochemical sensing platforms. Environ Sci Water Res Technol 6(10):2676–2690. https://doi.org/10.1039/d0ew00407c

    Article  CAS  Google Scholar 

  12. Cepriá G, Hamida S, Laborda F, Castillo JR (2009) Electroanalytical determination of arsenic (iii) and total arsenic in 1 mol L HCl using a carbonaceous electrode without a reducing agent. Anal Lett 42(13):1971–1985. https://doi.org/10.1080/00032710903082713

    Article  CAS  Google Scholar 

  13. Farghaly OA, Hameed RSA, Abu-Nawwas A (2014) Analytical application using modern electrochemical techniques. Int J Electrochem Sci 9:3287–3318

    Google Scholar 

  14. Jaramillo O, Sukeri A, Saravia LPH (2017) Nanoporous gold microelectrode: a novel sensing platform for highly sensitive and selective determination of arsenic(III) using anodic stripping voltammetry. Electroanalysis 10:1–8. https://doi.org/10.1002/elan.201700301

    Article  CAS  Google Scholar 

  15. Guo Z, Seol M, Gao C (2016) Functionalized porous Si nanowires for selective and simultaneous electrochemical detection of Cd(II) and Pb(II) ions. Electrochim Acta 211:998–1005. https://doi.org/10.1016/j.electacta.2016.06.141

    Article  CAS  Google Scholar 

  16. Pizarro J, Flores E, Jimenez V (2019) Chemical Synthesis and characterization of the first cyrhetrenyl-appended calix (4) arene macrocycle and its application as an electrochemical sensor for the determination of Cu (II) in bivalve mollusks using square wave anod. Sens Actuators B Chem 281:115–122. https://doi.org/10.1016/j.snb.2018.09.099

    Article  CAS  Google Scholar 

  17. Fundamentals of stripping voltammetry. Princeton applied research, application note S-6, issue 865, www.princetonappliedresearch.com

  18. Hwang J, Wang X, Zhao D, Rex MM, Cho HJ, Hyoung W (2019) A novel nanoporous bismuth electrode sensor for in situ heavy metal detection. Electrochim Acta 298:440–448. https://doi.org/10.1016/j.electacta.2018.12.122

    Article  CAS  Google Scholar 

  19. Sun Y, Sun J, Wang J, Pi Z, Wang L (2019) Sensitive and anti-interference stripping voltammetry analysis of Pb (II) in water using flower-like MoS2/rGO composite with ultra-thin nanosheets. Anal Chim Acta 1063:64–74. https://doi.org/10.1016/j.aca.2019.03.008

    Article  CAS  Google Scholar 

  20. Palisoc S, Jane A, Pardilla A, Racines L, Natividad M (2019) Electrochemical detection of lead and cadmium in UHT-processed milk using bismuth nanoparticles/Nafion ® -modified pencil graphite electrode. Sens Bio-Sens Res 23:100268(1–8). https://doi.org/10.1016/j.sbsr.2019.100268

  21. Buica G, Ungureanu E, Birzan L, Razus AC, Popescu LM (2013) Voltammetric sensing of lead and cadmium using poly (4-azulen-1-yl-2, 6-bis (2-thienyl ) pyridine ) complexing films. J Electroanal Chem 693:67–72. https://doi.org/10.1016/j.jelechem.2013.01.034

    Article  CAS  Google Scholar 

  22. Senthilkumar S, Saraswathi R (2009) Chemical electrochemical sensing of cadmium and lead ions at zeolite-modified electrodes: optimization and field measurements. Sens Actuators B Chem 141(1):65–75. https://doi.org/10.1016/j.snb.2009.05.029

    Article  CAS  Google Scholar 

  23. Ul A, Howlader MMR, Hu N, Deen MJ (2019) Electrochemical sensing of lead in drinking water using β -cyclodextrin- modified MWCNTs. Sens Actuators B Chem 296(2):126632. https://doi.org/10.1016/j.snb.2019.126632

  24. Koudelkova Z, Syrovy T, Ambrozova P, Moravec Z (2017) Determination of zinc, cadmium, lead, copper and silver using a carbon paste electrode and a screen printed electrode modified with chromium(iii) oxide. Sensor 17:1832. https://doi.org/10.3390/s17081832

    Article  CAS  Google Scholar 

  25. Huang H, Chen T, Liu X, Ma H (2014) Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials. Anal Chim Acta 852:45–54. https://doi.org/10.1016/j.aca.2014.09.010

    Article  CAS  Google Scholar 

  26. Zhang Y, Li C, Su Y, Mu W, Han X (2019) Simultaneous detection of trace Cd (II) and Pb (II) by differential pulse anodic stripping voltammetry using a bismuth oxycarbide/nafion electrode. Inorg Chem Commun 111:107672. https://doi.org/10.1016/j.inoche.2019.107672

  27. Baghayeri M, Amiri A, Maleki B, Alizadeh Z, Reiser O (2018) A simple approach for simultaneous detection of cadmium (II) and lead (II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe. Sens Actuators B Chem 273:1442–1450. https://doi.org/10.1016/j.snb.2018.07.063

    Article  CAS  Google Scholar 

  28. Priya T, Dhanalakshmi N, Thennarasu S, Thinakaran N (2018) A novel voltammetric sensor for the simultaneous detection of Cd2+ and Pb2+ using graphene oxide/κ-carrageenan/L-cysteine nanocomposite. Carbohydr Polym 182:199–206. https://doi.org/10.1016/j.carbpol.2017.11.017

    Article  CAS  Google Scholar 

  29. Kumar S, Sachan S, Kumar S (2019) Ultra-trace sensing of cadmium and lead by square wave anodic stripping voltammetry using ionic liquid modified graphene oxide. Mater Sci Energy Technol 2(3):667–675. https://doi.org/10.1016/j.mset.2019.09.004

    Article  Google Scholar 

  30. Oularbi L, Turmine M, Rhazi M (2017) Electrochemical determination of traces lead ions using a new nanocomposite of polypyrrole/carbon nanofibers. J Solid State Electrochem 21:3289–3300. https://doi.org/10.1007/s10008-017-3676-2

    Article  CAS  Google Scholar 

  31. Biyani M, Biyani R, Takamura T (2017) DEP-On-go for simultaneous sensing of multiple heavy metals pollutants in environmental samples. Sensors (Switzerland) 17(1):1–14. https://doi.org/10.3390/s17010045

    Article  CAS  Google Scholar 

  32. Hughes G, Westmacott K, Honeychurch KC, Crew A, Pemberton RM, Hart JP (2016) Recent advances in the fabrication and application of screen-printed electrochemical (bio)sensors based on carbon materials for biomedical, agri-food and environmental analyses. Biosensors 6(4):50. https://doi.org/10.3390/bios6040050

    Article  CAS  Google Scholar 

  33. Sánchez-Tirado E, Salvo C, González-Cortés A, Yáñez-Sedeño P, Langa F, Pingarrón JM (2017) Electrochemical Immunosensor for simultaneous determination of interleukin-1 beta and tumor necrosis factor alpha in serum and saliva using dual screen printed electrodes modified with functionalized double–walled carbon nanotubes. Anal Chim Acta 959:66–73. https://doi.org/10.1016/j.aca.2016.12.034

    Article  CAS  Google Scholar 

  34. Foster CW, De Souza AP, Metters JP, Bertotti M, Banks CE (2015) Metallic modified (bismuth, antimony, tin and combinations thereof) film carbon electrodes. Analyst 140(22):7598–7612. https://doi.org/10.1039/c5an01692d

    Article  CAS  Google Scholar 

  35. Barton J, Garcia M, Santos D (2016) Screen-printed electrodes for environmental monitoring of heavy metal ions: a review. Microchim Acta 183(2):503–517. https://doi.org/10.1007/s00604-015-1651-0

    Article  CAS  Google Scholar 

  36. Wang J, Tian B (1992) Screen-printed stripping voltammetric/potentiometric electrodes for decentralized testing of trace lead. Anal Chem 64(15):1706–1709. https://doi.org/10.1021/ac00039a015

    Article  CAS  Google Scholar 

  37. Honeychurch KC, Hawkins DM, Hart JP, Cowell DC (2002) Voltammetric behaviour and trace determination of copper at a mercury-free screen-printed carbon electrode. Talanta 57(3):565–574. https://doi.org/10.1016/S0039-9140(02)00060-7

    Article  CAS  Google Scholar 

  38. Parat C, Betelu S, Authier L, Potin-Gautier M (2006) Determination of labile trace metals with screen-printed electrode modified by a crown-ether based membrane. Anal Chim Acta 573–574:14–19. https://doi.org/10.1016/j.aca.2006.04.081

    Article  CAS  Google Scholar 

  39. Noh MFM, Tothill IE (2006) Development and characterisation of disposable gold electrodes, and their use for lead (II) analysis. Anal Bioanal Chem 386(7–8):2095–2106. https://doi.org/10.1007/s00216-006-0904-5

    Article  CAS  Google Scholar 

  40. Masawat P, Liawruangrath S, Slater JM (2003) Flow injection measurement of lead using mercury-free disposable gold-sputtered screen-printed carbon electrodes (SPCE). Sens Actuators B Chem 91(1–3):52–59. https://doi.org/10.1016/S0925-4005(03)00066-2

    Article  CAS  Google Scholar 

  41. Martínez-Paredes G, González-Garcaiaa MB, Costa-Garcia A (2009) Lead sensor using gold nanostructured screen-printed carbon electrodes as transducers. Electroanalysis 21(8):925–930. https://doi.org/10.1002/elan.200804399

    Article  CAS  Google Scholar 

  42. Wang J, Tian B (1993) Mercury-free disposable lead sensors based on potentiometric stripping analysis at gold-coated screen-printed electrodes. Anal Chem 65:1529–1532. https://doi.org/10.1021/ac00059a008

    Article  CAS  Google Scholar 

  43. Shi J, Tang F, Xing H, Zheng H, Bi L, Wang W (2012) Electrochemical detection of Pb and Cd in paper-based microfluidic devices. J Braz Chem Soc 23(6):1124–1130. https://doi.org/10.1590/S0103-50532012000600018

    Article  CAS  Google Scholar 

  44. Mouhamed N, Cheikhou K, Rokhy GEM, Bagha DM, Guèye MDC, Tzedakis T (2018) Determination of lead in water by linear sweep anodic stripping voltammetry (LSASV) at unmodified carbon paste electrode: optimization of operating parameters. Am J Anal Chem 09(3):171–186. https://doi.org/10.4236/ajac.2018.93015

    Article  CAS  Google Scholar 

  45. Zaib M, Makshoof M, Saeed A, Farooq U (2015) Biosensors and bioelectronics electrochemical determination of inorganic mercury and arsenic- a review. Biosens Bioelectron 74:895–908. https://doi.org/10.1016/j.bios.2015.07.058

  46. Ariño C, Serrano N, Díaz-Cruz JM, Esteban M (2017) Voltammetric determination of metal ions beyond mercury electrodes. a review. Anal Chim Acta 990:11–53. https://doi.org/10.1016/j.aca.2017.07.069

    Article  CAS  Google Scholar 

  47. March G, Dung T, Piro B (2015) Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors (Basel) 5(2):241–275. https://doi.org/10.3390/bios5020241

    Article  Google Scholar 

  48. Hayat A, Marty JL (2014) Disposable screen printed electrochemical sensors: tools for environmental monitoring. Sensors (Switzerland) 14(6):10432–10453. https://doi.org/10.3390/s140610432

    Article  CAS  Google Scholar 

  49. Serrano N, Castilla O, Ariño C, Diaz-Cruz MS, Díaz-Cruz JM (2019) Commercial screen-printed electrodes based on carbon nanomaterials for a fast and cost-effective voltammetric determination of paracetamol, ibuprofen and caffeine in water samples. Sensors (Switzerland), 19(18). https://doi.org/10.3390/s19184039

  50. https://www.metrohm.com/nb-no/productsoverview/electrochemistry/portable%20potentiostats/29100010

Download references

Acknowledgements

The authors thank the Director, CSIO Director for his support and the Academy of Scientific & Innovative Research-Central Scientific Instruments Organization (AcSIR-CSIO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Antil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Monika Antil, Bansod, B.S. (2022). Recent Perspective and Applications of Electrode Materials for Electrochemical Sensing of Lead Ions. In: Mudali, U.K., Aruna, S.T., Nagaswarupa, H.P., Rangappa, D. (eds) Recent Trends in Electrochemical Science and Technology. Springer Proceedings in Materials, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-16-7554-6_13

Download citation

Publish with us

Policies and ethics