Skip to main content
Log in

Availability of copper in mine tailings with humic substance addition and uptake by Atriplex halimus

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The chemical characteristics of mine tailings, organic amendments (doses), and plants are the critical factors that must be evaluated and monitored to ensure the sustainability of phytostabilization. The aim of this study was to evaluate the mobility of copper (Cu) in mine tailings (MT) of the Zone Central of Chile to which commercial humic substances were added, examining their effect on the uptake of Atriplex halimus. Two commercial humic substances (HS1 and HS2) extracted from leonardite (highly oxidized lignite), of different pH and total organic carbon, were evaluated by adsorption curve for Cu. In columns, soluble Cu, pH, and electrical conductivity in leachates were evaluated for MT, MT + HS1, and MT + HS2, and HS1 and HS2 in doses of 120 mg kg−1. In pot assay, seeds were germinated directly in MT and cultivated for 140 days with the addition of HS2 in 120 and 240 mg kg−1. Mine tailing presents high concentration of Cu (2016 ± 223 mg kg−1, pH 6.3 ± 0.1). The results of sequential extraction indicate that Cu is associated with the sulfide fraction of low risk of mobility. The amount of Cu sorbed by HS1 was higher than that sorbed by HS2, and both humic substances showing better fit to the Freundlich than Langmuir model. Lixiviation of Cu was significantly lower in MT + HS1 (0.166 ± 0.043 mg kg−1) and MT + HS2 (0.157 ± 0.018 mg kg−1) than in MT (0.251 ± 0.052 mg kg−1). Copper concentration in plants reached 185.8 ± 37.8 mg kg−1 in the roots and 32.6 ± 7.4 mg kg−1 in the aerial parts cultivated in MT without effect of the humic substance addition in Cu uptake nor growth. Copper concentrations in the aerial parts were adjusted to sufficient or normal levels in plant. A good management of mine tailings through phytostabilization could consider an adequate mixture of humic substances (to avoid leaching of metals) and an organic amendment that provides essential nutrients and increases biomass generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments (2nd ed.). N.Y.: Springer.

    Book  Google Scholar 

  • Alcantara, H., Doronila, A., Nicolas, M., Ebbs, S., & Kolev, S. (2015). Growth of selected plant species in biosolids-amended mining tailings. Mining Engineering, 80, 25–32.

    CAS  Google Scholar 

  • Alloway, B. J. (2010). Heavy metals in soils. In: Trace metals and metalloids in soil and their bioavailability (3rd ed.). N.Y.: Springer.

    Google Scholar 

  • Canellas, L., Olivares, F., Aguiar, N., Jones, D., Nebbioso, A., Mazzei, P., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15–27.

    Article  CAS  Google Scholar 

  • Clemente, R., Walker, D. J., Pardo, T., Martínez-Fernández, D., & Bernal, M. P. (2012). The use of a halophytic plant species and organic amendments for the remediation of a trace elements-contaminated soil under semi-arid conditions. Journal of Hazardous Materials, 223-224, 63–71.

    Article  CAS  Google Scholar 

  • Conesa, H. M., & Schulin, R. (2010). The Cartagena-La Unión mining district (SE Spain):a review of environmental problems and emerging phytoremediation solutions after fifteen years research. Journal of Environmental Monitoring, 12, 1225–1233.

    Article  CAS  Google Scholar 

  • Dold, B., & Fontboté, L. (2001). Element cycling and secondary miningralogy in porphyry copper tailings as a function of climate, primary miningralogy, and mineral processing. Journal of Geochemical Exploration, 74, 3–55.

    Article  CAS  Google Scholar 

  • Doronila, A., Maddox, L., Reichman, S., King, D., Kolev, S., & Woodrow, I. (2014). Vegetation response of Australian native grass species redgrass (Bothriochloa macra (Steudel) S.T. Blake) and spider grass (Enteropogon acicularis (Lindl.) Lazarides) in saline and arsenic contaminated gold mining tailings: a glasshouse study. Mining Engineering, 56, 61–69.

    CAS  Google Scholar 

  • Evangelou, V.P. 1998.Environmental soil and water chemistry. Wiley&Sons New York.

    Google Scholar 

  • García-Arreola, M., Flores-Vélez, L., Loredo-Tovías, M., Aguillón-Robles, A., López-Doncel, R., Cano-Rodríguez, I., & Soriano-Pérez, S. (2018). Assessment of the acid drainage neutralization capacity and the toxic metals lixiviation of tailing from Guanajuato mining district, Mexico. Environmental Earth Sciences, 77, 355.

    Article  CAS  Google Scholar 

  • Hossner, L., & Shahandeh, H. (2005). Rehabilitation of minerals processing residue (tailings). In R. Lal (Ed.), Encyclopedia of Soil Science (pp. 1450–1455). New York: Marcel Dekker.

    Google Scholar 

  • Ibrahim, S. M., & Goh, T. B. (2004). Changes in macroaggregation and associated characteristics in mine tailings amended with humic substances. Communications in Soil Science and Plant, 35, 1905–1922.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soil and plants (4th ed.). N.Y.: CRC Press.

    Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. (2007). Trace elements from soil to human. N.Y.: Springer.

    Book  Google Scholar 

  • Kelly, R.T. (1979). Proc. Conference on reclamation of contaminated land, Eastbourne, UK, October 1979 (Published for Society of the Chemical Industry, London, 1980. ISBN 0901001686 9780901001689). pp. 567.

  • Khoeurn, K., Sakaguchi, A., Tomiyamab, S., & Igarashib, I. (2019). Long-term acid generation and heavy metal leaching from the tailings of Shimokawa mine, Hokkaido, Japan: column study under natural condition. Journal of Geochemical Exploration, 201, 1–12.

    Article  CAS  Google Scholar 

  • Lam, E., Gálvez, M. E., Cánovas, M., Montofré, I. L., Rivero, D., & Faz, A. (2016). Evaluation of metal mobility from copper mining tailings in northern Chile. Environmental Science and Pollution Research, 23, 11901–11915.

    Article  CAS  Google Scholar 

  • Lam, E., Cánovas, M., Gálvez, M., Montofré, I., Keith, B., Faz, A., & B. (2017). Evaluation of the phytoremediation potential of native plants growing on a copper mining tailing in northern Chile. Journal of Geochemical Exploration, 182, 210–217.

    Article  CAS  Google Scholar 

  • Lottermoser, B. G. (2010). Mining wastes. In: Characterization, treatment and environmental impacts (3rd ed.). USA: Springer.

    Book  Google Scholar 

  • Lutts, S., Lefère, I., Delpèree, C., Kivits, S., Dechamps, C., Robledo, A., & Correal, E. (2004). Heavy metal accumulation by halophyte species Mediterranean saltbush. Journal of Environmental Quality, 33, 1271–1279.

    Article  CAS  Google Scholar 

  • Madejón, E., Doronila, A. I., Madejón, P., Baker, A. J. M., & Woodrow, I. E. (2012). Biosolids, mycorrhizal fungi and eucalypts for phytostabilization of arsenical sulphidic mining tailings. Agroforestry Systems, 84, 389–399.

    Article  Google Scholar 

  • Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mining tailings in arid and semiarid environments: an emerging remediation technology. Environmental Health Perspectives, 116, 278–283.

    Article  CAS  Google Scholar 

  • Mileusnić, M., Siyowi, M. B., Fred, K. A., Ružičić, S., Mapaure, I., Ch, P., & Maruwa. (2014). Assessment of agricultural soil contamination by potentially toxic metals dispersed from improperly disposed tailings, Kombat mining, Namibia. Journal of Geochemical Exploration, 144, 409–420.

    Article  CAS  Google Scholar 

  • Moreno-Jiménez, E., Esteban, E., & Peñalosa, J. (2012). The fate of arsenic in soils-plants system. Reviews of Environmental Contamination and Toxicology, 215, 1–37.

    Google Scholar 

  • Navarro, A., & Martínez, F. (2010). Evaluation of metal attenuation from mine tailings in SE Spain (Sierra Almagrera): a soil-leaching column study. Mine Water and the Environment, 29, 53–67.

    Article  CAS  Google Scholar 

  • NCh 1333 (1987). Norma Chilena Oficial. Requisitos de calidad de agua para diferentes usos. https://ciperchile.cl/pdfs/11-2013/norovirus/NCh1333-1978_Mod-1987.pdf.

  • NCh 409/1 (2005). Norma Chilena Oficial. Agua Potable. https://ciperchile.cl/pdfs/11-2013/norovirus/NCh409.pdf.

  • Osmond, C. B., Björkman, O., & Anderson, D. J. (1980). Physiological processes in plant ecology. Toward a Synthesis with Atriplex. Berlin Heidelberg: Springer-Verlag.

    Book  Google Scholar 

  • Pardo, T., Bernal, M. P., & Clemente, R. (2017). Phytostabilisation of severely contaminated mining tailings using halophytes and field addition of organic and inorganic amendments. Chemosphere, 178, 556–564.

    Article  CAS  Google Scholar 

  • Park, I., Baltazar, C., Jeon, S., Li, X., Seno, K., Ito, M., & Hiroyoshi, N. (2019). A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere, 219, 588–606.

    Article  CAS  Google Scholar 

  • Parra, A., Zornoza, R., Conesa, E., Gómez-López, M. D., & Faz, A. (2016). Evaluation of the suitability of three Mediterranean shrub species for phytostabilization of pyritic mining soils. Catena, 136, 59–65.

    Article  CAS  Google Scholar 

  • Parraga-Aguado, I., Nazaret, M., Álvarez-Rogel, J., & Conesa, H. (2014). Assessment of the employment of halophyte plant species for thephytomanagement of mining tailings in semiarid areas. Ecological Engineering, 71, 598–604.

    Article  Google Scholar 

  • Pérez-Esteban, J., Escolástico, C., Ruiz-Fernández, J., Masaguer, A., & Moliner, A. (2013). Bioavailability and extraction of heavy metals from contaminated soil by Atriplex halimus. Environmental and Experimental Botany, 88, 53–59.

    Article  CAS  Google Scholar 

  • Roletto, E., Barberis, R., Consiglio, M., & Jodice, R. (1985). Chemical parameters for evaluating compost maturity. Biocycle, 26, 46–47.

    CAS  Google Scholar 

  • Santibáñez, F. (2017). Atlas Agroclimatico de Chile. Tomo III. ISBN 978-956-19-1047-8. Universidad de Chile. Fundación para la Innovación Agraria.

  • Santibáñez, C., Verdugo, C., & Ginocchio, R. (2008). Phytostabilization of copper mining tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Science of the Total Environment, 395, 1–10.

    Article  CAS  Google Scholar 

  • Schnitzer, M., & Khan, S. U. (1978). Soil organic matter. Amsterdam: Elsevier.

    Google Scholar 

  • Stevenson, F. J. (1994). Humus chemistry. N.Y.: John Wiley and Sons Inc..

    Google Scholar 

  • Szczerski, C., Naguit, C., Markham, J., Goh, T., & Renault, S. (2013). Short- and long-term effects of modified humic substances on soil evolution and plant growth in gold mining tailings. Water, Air, and Soil Pollution, 224, 1471.

    Article  CAS  Google Scholar 

  • Tapia, Y., Cala, V., Eymar, E., Frutos, I., Gárate, A., & Masaguer, A. (2011). Phytoextraction of cadmium by four mediterranean shrubs species. International Journal of Phytoremediation, 13, 567–579.

    Article  CAS  Google Scholar 

  • Tapia, Y., Diaz, O., Pizarro, C., Segura, S., Vines, M., Zúñiga, G., & Moreno-Jiménez, E. (2013a). Atriplex atacamensis and Atriplex halimus resist as contamination in pre-andean soils (northern Chile). Science of the Total Environment, 450-451, 188–196.

    Article  CAS  Google Scholar 

  • Tapia, Y., Eymar, E., Gárate, A., & Masaguer, A. (2013b). Effect of citric acid on metals mobility in pruning wastes and biosolids compost and metals uptake in Atriplex halimus and Rosmarinus officinalis. Environmental Monitoring and Assessment, 185, 4221–4229.

    Article  CAS  Google Scholar 

  • Tapia, Y., Bustos, P., Salazar, O., Casanova, M., Castillo, B., Acuña, E., & Masaguer, A. (2017). Phytostabilization of Cu in mining tailings using native plant Carpobrotus aequilaterus and the addition of potassium humates. Journal of Geochemical Exploration, 183, 102–113.

    Article  CAS  Google Scholar 

  • Tipping, E. (2002). Cation binding by humic substances. In Cambridge Environmental Chemistry Series 12. N.Y.: Cambridge University Press.

    Google Scholar 

  • Touceda-González, M., Álvarez-López, V., Prieto-Fernández, Á., Rodríguez-Garrido, B., Trasar-Cepeda, C., Mench, M., Puschenreiter, M., Quintela-Sabarís, C., Macías-García, F., & Kidd, P. S. (2017). Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mining tailings. Journal of Environmental Management, 186, 301–313.

    Article  CAS  Google Scholar 

  • Walker, D. J., Lutts, S., Sánchez-García, M., & Correal, E. (2014). Atriplex halimus L.: its biology and uses. Journal of Arid Environments, 100-101, 111–121.

    Article  Google Scholar 

  • Weil, R., & Brady, N. (2017). The nature and properties of soils (15th ed.. ISBN 978013325448). USA: Pearson.

    Google Scholar 

  • Zhang, J., Daia, J., Wang, R., Li, F., & Wan, W. (2009). Adsorption and desorption of divalent mercury (Hg2+) on humic acids and fulvic acids extracted from typical soils in China. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 335, 194–201.

    Article  CAS  Google Scholar 

  • Zornoza, R., Faz, A., Carmona, D. M., Kabas, S., Martínez-Martínez, S., & Acosta, J. A. (2012). Plant cover and soil biochemical properties in a mining tailing pond five years after application of marble wastes and organic amendments. Pedosphere, 22(1), 22–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study received support from the National Commission for Scientific and Technological Research (CONICYT) of the Ministry of Education, FONDECYT REGULAR Project no. 1150513 (2015–2017) and Project PIA ANILLO ACM no. 170002 (2018–2020) Chile. We would also like to thank engineers Marcelo Gutiérrez and Andrés Arias from the University of Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Tapia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapia, Y., Casanova, M., Castillo, B. et al. Availability of copper in mine tailings with humic substance addition and uptake by Atriplex halimus. Environ Monit Assess 191, 651 (2019). https://doi.org/10.1007/s10661-019-7832-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7832-2

Keywords

Navigation