Skip to main content

Advertisement

Log in

Influence of land use on trophic state indexes in northeast Brazilian river basins

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Eutrophication is a natural process within the ecological succession of aquatic ecosystems that results from nutrient inputs to water bodies, especially limiting elements such as phosphorus and nitrogen. However, the anthropogenic activities in river basin influence areas accelerate the eutrophication process of water bodies. Eutrophication is a global problem and considered one of the most relevant reasons of aquatic environments’ degradation. In this context, watercourses that make up the Eastern Water Planning and Management Region (RPGA) receive high pollutant contributions due to release of wastewater and agriculture diffuse sources from cities located in influence area. The present study aims to evaluate the land use effect in trophic state of the water bodies in Eastern RPGA basins. The Carlson Trophic State Index in 1977, adjusted by Lamparelli 2004, was used to determine the eutrophication degree of the three river basins (Almada, Cachoeira, and Una) located in the Eastern RPGA. The nutrient and chlorophyll a data were obtained from the Monitoring Program (Monitora) of Environment and Water Resources Institute of Bahia (INEMA), covering the period from 2008 to 2015, at thirteen (13) sampling sites, with quarterly collections. The results showed that, among three basins analyzed, Cachoeira River basin presented the worst values for trophic state index (TSI) due to the high level of anthropization, while best results were found in Una basin. It was verified that land use exerted a significant influence on the water quality of bodies of water evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728.

    Article  Google Scholar 

  • Alves, R. J. V., Cardin, L., & Kropf, M. S. (2007). Angiosperm disjunction “Campos rupestres-restingas”: a re-evaluation. Acta Botanica Brasilica, 21, 675–685.

    Article  Google Scholar 

  • APHA. (2005). Standard methods of examination of water and wastewater (20th ed.). Washington: American Public Health Association.

    Google Scholar 

  • Bose, R., DE, A., Subho, M., Sen, G., & Deb, A. M. (2012). Coastal water pollution in two rivers of the Bengal Delta. Geochemistry International, 50(10), 860–868.

    Article  CAS  Google Scholar 

  • Brandão, C. S., Silva, L. P., Chaussê, T., & Silva, D. M. L. (2015). Spatio-temporal variability of dissolved loads in rivers in environmental protected areas in Northeast Brazil. Revista Brasileira de Recursos Hídricos, 20(3), 551–559.

    Article  Google Scholar 

  • Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22(2), 261–269.

    Article  Google Scholar 

  • Castilla, E. P., Cunha, D. G. F., Lee, F. W. F., Loiselle, S., Ho, K. C., & Hall, C. (2015). Quantification of phytoplankton bloom dynamics by citizen scientists in urban and peri-urban environments. Environmental Monitoring Assessment, 187–690.

  • CETESB. Companhia Ambiental do Estado de São Paulo. (2015). Qualidade de água. Available in: http://aguasinteriores.cetesb.sp.gov.br/wp-content/uploads/sites/32/2013/11/04.pdf. Accessed August 2015.

  • Chavez, P., Stuart, C. S., & Jeffrey, A. A. (1991). Comparison of three different methods to merge multiresolution and multispectral data- Landsat TM and SPOT panchromatic. Photogrammetric Engineering and Remote Sensing, 57(3), 265–303.

    Google Scholar 

  • Cheung, M. Y., Liang, S., & Lee, J. (2013). Toxin-producing cyanobacteria in freshwater: a review of the problems, impact on drinking water safety, and efforts for protecting public health. Journal of Microbiology, 51(1), 1–10.

    Article  CAS  Google Scholar 

  • Clark, R. N., Swayze, G.A., Wise, R. A., Livo, K. E., Hoefen, T.M., Kokaly, R. F., Sutley, S. J. (2017). USGS digital spectral library splib06a. U.S. Geological. Survey, Digital Data Series, 231. http://speclab.cr.usgs.gov/spectral.lib06. Accessed 22 January 2018.

  • CPRM. Serviço Geológico do Brasil. (2010). Base Cartográfica do Estado da Bahia - Escala 1:100.000. Blocos C e D. Geologia, Tectônica e Recursos Minerais do Brasil: Sistema de Informações Geográficas - SIG e Mapas. Belo Horizonte.

  • Da Silva, R. M., Mehli, U., Dos Santos, J. U. M., & De Menezes, M. P. M. (2010). The coastal restinga vegetation of Pará, Brazilian Amazon: a synthesis. Brazilian Journal of Botany, 33(4), 563–573, 2010.

    Article  Google Scholar 

  • Ding, J., Jiang, Y., Fu, L., Peng, Q., & Kang, M. (2015). Impacts of land use on surface water quality in a subtropical river basin: a case study of the Dongjiang River basin, southeastern China. Water, 7, 4427–4445.

    Article  CAS  Google Scholar 

  • GlobCover. (2009). GlobCover Land Cover Maps. https://due.esrin.esa.int/page_globcover.php. Accessed 15 January 2015.

  • Gomes, R. L., Marques, E. A. G., & Franco, G. B. (2017). The waste disposal suitability of Almada River watershed. Engenharia Sanitária e Ambiental, 22(4), 731–747.

    Article  Google Scholar 

  • Halstead, J. A., Kliman, S., Berheide, C. W., Chaucer, A., & Cock-Esteb, A. (2014). Urban stream syndrome in a small, lightly developed watershed: a statistical analysis of water chemistry parameters, land use patterns, and natural sources. Environmental Monitoring and Assessment, 186(6), 3391–3414.

    Article  CAS  Google Scholar 

  • IBGE. Instituto Brasileiro de Geografia e Estatística. (2010). Available in: http://www.sidra.ibge.gov.br/bda/territorio/uftabunit.asp?t=5&n=6&z=t&o=4. Accessed 28 May 2016.

  • INEMA. Instituto do Meio Ambiente e Recursos Hídricos. (2016). Available in: http://www.inema.ba.gov.br/gestao-2/comites-de-bacias/comites/cbh-leste/. Accessed 12 November 2016.

  • Kamjunke, N., Buttner, O., Jager, C. G., Marcus, H., Tümpling, W. V., Halbedel, S., Norf, H., Brauns, M., Baborowsk, M., Wild, R., Borchardt, D., & Weitere, M. (2013). Biogeochemical patterns in a river network along a land use gradient. Environmental Monitoring and Assessment, 185(11), 9221–9236.

    Article  CAS  Google Scholar 

  • Lamparelli, M.C. Trophic status in São Paulo State water bodies – evaluation of monitoring methodologies. São Paulo (BR): 2004. PhD Thesis – Instituto de Biociências da Universidade de São Paulo.

  • Lee, G.F., & Jones-Lee, A. (1998). Determination of nutrient limiting maximum algal biomass in waterbodies. https://www.gfredlee.com/Nutrients/nut_limit.pdf. Accessed 14 April 2014.

  • Lourenço, R. W., Landim, P.M.B. (2004). Study on the variability of normalize difference vegetation index/NDVI by indicative kriging. Holos Environment, 4 (1), 38–55.

  • Lucio, M. Z. T. P. Q. L. (2012). Hydrochemistry of Cachoeira River (Bahia state, Brazil). Acta Limnologica Brasiliensia, 24(2), 181–192.

    Article  Google Scholar 

  • Lundberg, C. (2013). Eutrophication, risk management and sustainability: the perceptions of different stakeholders in the northern Baltic Sea. Marine Pollution Bulletin, 66(1–2), 143–150.

    Article  CAS  Google Scholar 

  • Maia, A. A. D., Carvalho, S. L., & Carvalho, F. T. (2015). Comparison of two indexes of determination of the trophic state in the waters of Baixo São José dos Dourados, São Paulo, Brazil. Engenharia Sanitária e Ambiental, 20(4), 613–622.

    Article  Google Scholar 

  • Meneses, B. M., Reis, R., Vale, M. J., & Saraiva, R. (2015). Land use and land cover changes in Zêzere watershed (Portugal) - water quality implications. Science of the Total Environment, 527, 439–447.

    Article  Google Scholar 

  • Meng, C., Li, Y., Wang, Y., Yang, W., Jiao, J., Wang, M., Zhang, M., Li, Y., & Wu, J. (2015). TMDL for phosphorus and contributing factors in subtropical watersheds of southern China. Environmental Monitoring and Assessment, 187(8), 514.

    Article  Google Scholar 

  • Ouyang, Y. (2012). Estimation of shallow groundwater discharge and nutrient load into a river. (2012). Ecological Engineering, 38(1), 101–104.

    Article  Google Scholar 

  • Pilgrim, C. M., Mikhailova, E. A., Post, C. J., & Hains, J. J. (2014). Spatial and temporal analysis of land cover changes and water quality in the Lake Issaqueena watershed, South Carolina. Environmental Monitoring and Assessment, 186(11), 7617–7630.

    Article  CAS  Google Scholar 

  • Privette, C., & Smink, J. (2017). Assessing the potential impacts of WWTP effluent reductions within the Reedy River watershed. Ecological Engineering, 98, 11–16.

    Article  Google Scholar 

  • Santos, S.O. & Souza, A.C. (2014). Panorama do saneamento básico no município de Itabuna (Bahia) de 2000 a 2010. Available in: http://www.uesb.br/eventos/semana_economia/2014/anais-2014/b01.pdf. Accessed 15 October 2016.

  • SEI. Superintendência de Estudos Econômicos e Sociais da Bahia (2004). Mapas digitalizados do Estado da Bahia: base de dados. Salvador: SEI. (CD-ROM).

  • Shen, Z.l., & Liu, Q. (2009). Nutrients in the Changjiang River. Environment Monitoring and Assessment, 153(1–4), 27–44.

  • Shi, P., Zhang, Y., Li, Z., Li, P., & Xu, G. (2017). Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales. Catena, 151, 182–190.

    Article  CAS  Google Scholar 

  • Silva, K. B., Gomes, R. L., & Rego, N. A. C. (2015a). Social and environmental hydrographics implications of the land use in the plain and coastal boards between Ilhéus and Olivença – BA. (2015). Journal of Hyperspectral Remote Sensing, 5(1), 13–26.

    Google Scholar 

  • Silva, M. A. M., Souza, M. F. L., & Abreu, P. C. (2015b). Spatial and temporal variation of dissolved inorganic nutrients, and chlorophyll-α in a tropical estuary in northeastern Brazil: dynamics of nutrient removal. Brazilian Journal of Oceanography, 63(1), 1–15.

    Article  Google Scholar 

  • Toledo, Jr., A.P., Talarico, M., Chinez, S. J., & Agudo, E. G. A. (1983). A aplicação de modelos simplificadospara a avaliação de processo da eutrofização em lagos e reservatórios tropicais. https://www.scielo.br/scielo.php?script=sci_nlinks&ref=000144&pid=S2179-975X201200040000500040&lng=pt. Accessed 10 Feb 2016.

  • Tu, J. (2011). Spatially varying relationships between land use and water quality across an urbanization gradient explored by geographically weighted regression. Applied Geography, 31(1), 376–392.

    Article  Google Scholar 

  • Vieira, J. M. P., Pinho, J. L. S., Dias, N., Schwanenberg, D., & Van Den Boogaard, H. F. P. (2013). Parameter estimation for eutrophication models in reservoirs. Water Science and Technology, 68(2), 319–327.

    Article  CAS  Google Scholar 

  • Wan, R., Cai, S., Li, H., Yang, G., Li, Z., & Nie, X. (2014). Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River watershed, China. Journal of Environmental Management, 133, 1–11.

    Article  CAS  Google Scholar 

  • Wang, R., Xu, T., Yu, L., Zhu, J., & Li, X. (2013). Effects of land use types on surface water quality across an anthropogenic disturbance gradient in the upper reach of the Hun River, Northeast China. Environmental Monitoring and Assessment, 185(5), 4141–4151.

    Article  CAS  Google Scholar 

  • Whitehead, P. G., Jin, L., Baulch, H. M., Butterfield, D. A., Oni, S. K., Dillon, P. J., Futter, A. J., Wade, A. J., North, R., O’Connor, E. M., & Jarvie, H. P. (2011). Modelling phosphorus dynamics in multi-branch river systems: a study of the Black River, Lake Simcoe, Ontario, Canada. Science of the Total Environment, 412-413, 315–323.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raildo Mota de Jesus.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, O.F., Rocha, F.A., de Sousa, L.F. et al. Influence of land use on trophic state indexes in northeast Brazilian river basins. Environ Monit Assess 191, 77 (2019). https://doi.org/10.1007/s10661-019-7188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7188-7

Keywords

Navigation