Skip to main content

Advertisement

Log in

Characterisation of emission from open-field burning of crop residue during harvesting period in north-west India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Open-field crop residue burning is one of the important sources of atmospheric pollution in north-west India during the harvesting period. In this work, we studied NO2 and SO2 concentrations and physical and chemical properties of aerosols from open-field combustion of rice and wheat residue. NO2 and SO2 were analysed using UV-spectrophotometer and ion chromatography (IC) respectively. The aerosol particles were analysed by scan electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX) for their physical dimension (size distribution) and elemental composition, and by IC for their ionic content. The measured concentrations of gases during burning showed rice straw burning spews more NO2 and SO2 than wheat straw burning. The calculated size of the particles ranged from 0.26 to 151.09 μm with high standard deviation. The median diameter of 1.64 μm (± 6.9) represented the central tendency of the particles emitted due to this combustion process. Comparative content analysis revealed that rice-borne particles are richer in Na, K, Al, Si and Zn, whereas, wheat-borne particles are more abundant in C, Mg, Fe, P and Cl. The results from IC and SEM-EDX evidenced the presence of fluoride, sulphate, carbonate, chloride, oxides and silicate compounds in particles. The emission of greenhouse gases (GHGs) and aerosols with this particle chemistry increases the atmospheric opacity through the absorption and scattering of incoming radiation at a significant amount in the UV-IR range causing high aerosol optical depth (AOD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akhtar, M. S., & Memon, M. (2009). Biomass and nutrient uptake by rice and wheat: a three-way interaction of potassium, ammonium and soil type. Pakistan Journal of Botany, 41(6), 2965–2974.

    CAS  Google Scholar 

  • Alonso-Blanco, E. (2014). Impact of biomass burning on aerosol size distribution, aerosol optical properties and associated radiative forcing. Aerosol and Air Quality Research, 6, 708–724. https://doi.org/10.4209/aaqr.2013.05.0163.

    Article  CAS  Google Scholar 

  • Andréa, M. O., Rosenfeldt, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., & Silva-Dias, M. A. F. (2004). Smoking rain clouds over the Amazon. Science, 303, 1337–1342.

    Article  Google Scholar 

  • Andreae, M. O., & Crutzen, P. J. (1997). Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science, 276(5315), 1052–1058. https://doi.org/10.1126/science.276.5315.1052.

    Article  CAS  Google Scholar 

  • Andreae, M. O., & Merlet, P. (2001). Emission of trace gas and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955–966.

    Article  CAS  Google Scholar 

  • Andreae, M. O., & Rosenfeld, D. (2008). Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Science Review, 89, 13–41.

    Article  Google Scholar 

  • Awasthi, A., Agarwal, R., Mittal, S. K., Singh, N., Singh, K., & Gupta, P. K. (2011). Study of size and mass distribution of particulate matter due to crop residue burning with seasonal variation in rural area of Punjab, India. J Environ Monit: JEM, 13(4), 1073–1081. https://doi.org/10.1039/c1em10019j.

    Article  CAS  Google Scholar 

  • Badarinath, K. V. S., Kumar Kharol, S., & Rani Sharma, A. (2009). Long-range transport of aerosols from agriculture crop residue burning in Indo-Gangetic Plains—a study using LIDAR, ground measurements and satellite data. Journal of Atmospheric and Solar-Terrestrial Physics, 71(1), 112–120. https://doi.org/10.1016/j.jastp.2008.09.035.

    Article  Google Scholar 

  • Badrinath, K. V. S., Kiran Chand, T. R., & Krishna Prasad, V. (2006). Agriculture crop residue burning in the Indo-Gangetic Plains- a study using IRS-P6 AWiFS satellite data. Current Science, 91(8), 1085–1089.

    Google Scholar 

  • Bauer, S. E., Mishchenko, M. I., Lacis, A. A., Zhang, S., Perlwitz, J., & Metzger, S. M. (2007). Do sulfate and nitrate coatings on mineral dust have important effects on radiative properties and climate modeling? J Geophys Res Atmos, 112(6), 1–9. https://doi.org/10.1029/2005JD006977.

    Article  Google Scholar 

  • Biau, D. J., Kernéis, S., & Porcher, R. (2008). Statistics in brief: the importance of sample size in the planning and interpretation of medical research. Clinical Orthopaedics and Related Research, 466(9), 2282–2288. https://doi.org/10.1007/s11999-008-0346-9.

    Article  Google Scholar 

  • Brunner, T., Obernberger, I., Jöller, M., Arich, A., & Pölt, P. (2001). Behaviour of ash forming compounds in biomass furnaces - measurement and analyses of aerosols formed during fixed -bed biomass combustion. In Procedings of the IEA-Seminar “Aerosols from biomass combustion” Zurich (pp. 1–6).

  • Central Pollution Control Board. (2011). Guidelines for manual sampling analyses (pp. 1–62). New Delhi: Ministry of Environment and Forests, Govt. of India.

    Google Scholar 

  • Dhaliwal, M. K., Dhaliwal, S. S., Thind, H. S., & Gupta, R. K. (2014). Long term effect of manure and fertilizers on concentration and uptake of Zn, Cu, Fe and Mn in rice and wheat grains under rice-wheat system. International Journal of Science, Environment and Technology, 3(4), 1592–1601.

    Google Scholar 

  • Formenti, P. (2003). Inorganic and carbonaceous aerosols during the Southern African Regional Science Initiative (SAFARI 2000) experiment: chemical characteristics, physical properties, and emission data for smoke from African biomass burning. Journal of Geophysical Research, 108(D13), 1–16. https://doi.org/10.1029/2002JD002408.

    Article  CAS  Google Scholar 

  • Fuzzi, S., Andréa, M. O., Huebert, B. J., Kulmala, M., Bond, T. C., Boy, M., Doherty, S. J., Guenther, A., Kanakidou, M., Kawamura, K., Kerminen, V. M., Lohmann, U., Russell, L. M., & Poschl, U. (2006). Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmospheric Chemistry and Physics, 6, 2017–2038.

    Article  CAS  Google Scholar 

  • Ganguly, D., Jayaraman, A., Rajesh, T. A., & Gadhavi, H. (2006). Wintertime aerosol properties during foggy and nonfoggy days over urban center Delhi and their implications for shortwave radiative forcing. Journal of Geophysical Research, 111(D15), 1–15. https://doi.org/10.1029/2005JD007029.

    Article  CAS  Google Scholar 

  • Garcia, A., Rizzo, C. A., Ud-Din, J., Bartos, S. L., Senadhira, D., Flowers, T. J., & Yeo, A. R. (1997). Sodium and potassium transport to the xylem are inherited independently in rice, and the mechanism of sodium: potassium selectivity differs between rice and wheat. Plant, Cell and Environment, 20, 1167–1174. https://doi.org/10.1046/j.1365-3040.1997.d01-146.x.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Mehla, D. S. (1993). Depletion of micronutrients from soil and their uptake in rice-wheat rotation. Journal of the Indian Society of Soil Science, 41(4), 704–706.

    CAS  Google Scholar 

  • Gupta, P. K., & Sahai, S. (2004). Residue burning in rice – wheat cropping system: causes and implications. Current Science, 87(12), 1713–1717.

    CAS  Google Scholar 

  • Gupta, G. P., Kumar, B., Singh, S., & Kulshrestha, U. C. (2015). Urban climate and its effect on biochemical and morphological characteristics of Arjun (Terminalia arjuna) plant in National Capital Region Delhi. Chemistry and Ecology, 31(6), 524–538. https://doi.org/10.1080/02757540.2015.1043286.

    Article  CAS  Google Scholar 

  • Hu, Y., Odman, M. T., Chang, M. E., Jackson, W., Lee, S., Edgerton, E. S., Baumann, K., & Russell, A. G. (2008). Simulation of air quality impacts from prescribed fires on an urban area. Environmental Science and Technology, 42(10), 3676–3682.

    Article  CAS  Google Scholar 

  • Hungershoefer, K., Zeromskiene, K., Iinuma, Y., Helas, G., Trentmann, J., Trautmann, T., Parmar, R. S., Wiedensohler, A., Andreae, M. O., & Schmid, O. (2008). Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign. Atmospheric Chemistry and Physics, 8, 3427–3439.

    Article  CAS  Google Scholar 

  • IARI. (2012). Crop residues management with conservation agriculture: potential, constraints and policy needs (p. 32). New Delhi: Indian Agricultural Research Institute.

    Google Scholar 

  • Ichoku, C., Kahn, R., & Chin, M. (2012). Satellite contributions to the quantitative characterization of biomass burning for climate modeling. Atmospheric Research, 111, 1–28. https://doi.org/10.1016/j.atmosres.2012.03.007.

    Article  CAS  Google Scholar 

  • Jacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409(6821), 695–697. https://doi.org/10.1038/35055518.

    Article  CAS  Google Scholar 

  • Jain, N., Bhatia, A., & Pathak, H. (2014). Emission of air pollutants from crop residue burning in India. Aerosol and Air Quality Research, 14, 422–430. https://doi.org/10.4209/aaqr.2013.01.0031.

    Article  CAS  Google Scholar 

  • Keeler, G. J., Japar, S. M., Brachaczek, W. W., Gorse, R. A., Norbeck, J. M., & Pierson, W. R. (1990). The sources of aerosol elemental carbon at Allegheny Mountain. Atmospheric Environment, 24 (A)(11), 2795–2805. https://doi.org/10.1016/0960-1686(90)90166-K.

    Article  Google Scholar 

  • Kim Oanh, N. T., Ly, B. T., Tipayarom, D., Manandhar, B. R., Prapat, P., Simpson, C. D., & Sally Liu, L.-J. (2011). Characterization of particulate matter emission from open burning of rice straw. Atmospheric Environment, 45(2), 493–502. https://doi.org/10.1016/j.atmosenv.2010.09.023.

    Article  CAS  Google Scholar 

  • Koppmann, R., von Czapiewski, K., & Reid, J. S. (2005). A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmospheric Chemistry and Physics Discussions, 5(5), 10455–10516. https://doi.org/10.5194/acpd-5-10455-2005.

    Article  Google Scholar 

  • Krejci, R., Ström, J., de Reus, M., & Sahle, W. (2004). Single particle analysis of the accumulation mode aerosol over the northeast Amazonian tropical rain forest, Surinam, South America. Atmospheric Chemistry and Physics Discussions, 4(1), 533–568. https://doi.org/10.5194/acpd-4-533-2004.

    Article  Google Scholar 

  • Kulmala, M. (2003). Atmospheric science: how particles nucleate and grow. Science, 302(5647), 1000–1001.

    Article  CAS  Google Scholar 

  • Kulshrestha, U. C., Raman, R. S., Kulshrestha, M. J., Rao, T. N., & Hazarika, P. J. (2009). Secondary aerosol formation and identification of regional source locations by PSCF analysis in the Indo-Gangetic region of India. Journal of Atmospheric Chemistry, 63(1), 33–47. https://doi.org/10.1007/s10874-010-9156-z.

    Article  CAS  Google Scholar 

  • Kumar, P., Kumar, S., & Joshi, L. (2015). Socioeconomic and environmental implications of agricultural residue burning; a case study of Punjab, India. New Delhi: SpringerLink.com.

    Google Scholar 

  • Lack, D. A., Langridge, J. M., Bahreini, R., Cappa, C. D., Middlebrook, A. M., & Schwarz, J. P. (2012). Brown carbon and internal mixing in biomass burning particles. Proceedings of the National Academy of Sciences, 109(37), 14802–14807. https://doi.org/10.1073/pnas.1206575109.

    Article  Google Scholar 

  • Lafon, S., Sokolik, I. N., Rajot, J. L., Caquineau, S., & Gaudichet, A. (2006). Characterization of iron oxides in mineral dust aerosols: implications for light absorption. Journal of Geophysical Research, 111(D21), 1–19. https://doi.org/10.1029/2005JD007016.

    Article  CAS  Google Scholar 

  • Lehmann, E. L. (1999). “Student” and small-sample theory. Statistical Science, 14(4), 418–426. https://doi.org/10.1007/978-1-4614-1412-4.

    Article  Google Scholar 

  • Lewis, K., Arnott, W. P., Moosmüller, H., & Wold, C. E. (2008). Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument. Journal of Geophysical Research: Atmospheres, 113(16), 1–14. https://doi.org/10.1029/2007JD009699.

    Article  Google Scholar 

  • Lohmann, U., Stier, P., Hoose, C., Ferrachat, S., Kloster, S., Roeckner, E., & Zhang, J. (2007). Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmospheric Chemistry and Physics, 7, 3425–3446. https://doi.org/10.5194/acp-7-3425-2007.

    Article  CAS  Google Scholar 

  • Marshall, S., Taylor, J. A., Oglesby, R. J., Larson, J. W., & Erickson, D. J. (1996). Climatic effects of biomass burning. Environmental Software, 11(1–3), 53–58. https://doi.org/10.1016/S0266-9838(96)00039-1.

    Article  Google Scholar 

  • Ministry of Agriculture. (2014). Agriculture Census of India 2010–11, Provisional Results (Phase-II). New Delhi: Govt. of India http://agcensus.dacnet.nic.in/. Accessed 20 July 2014.

    Google Scholar 

  • Montero-Martinez, M. & Dickinson, R. E. (1998). Estimating the climate impact of biomass burning aerosols using the NCAR-CCM3 in the Amazon. In Proceedings of the eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson, Arizona (pp. 517–521).

  • Niemi, J. V., Tervahattu, H., Vehkamäki, H., Kulmala, M., Koskentalo, T., Sillanpää, M., & Rantamäki, M. (2004). Characterization and source identification of a fine particle episode in Finland. Atmospheric Environment, 38(30), 5003–5012. https://doi.org/10.1016/j.atmosenv.2004.06.023.

    Article  CAS  Google Scholar 

  • Niemi, J. V., Tervahattu, H., Vehkamäki, H., Martikainen, J., Laakso, L., Kulmala, M., et al. (2005). Characterization of aerosol particle episodes in Finland caused by wildfires in Eastern Europe. Atmospheric Chemistry and Physics Discussions, 5(2), 2469–2501. https://doi.org/10.5194/acpd-5-2469-2005.

    Article  Google Scholar 

  • Peterson, R. E., & Tyler, B. J. (2002). Analysis of organic and inorganic species on the surface of atmospheric aerosol using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Atmospheric Environment, 36(39–40), 6041–6049. https://doi.org/10.1016/S1352-2310(02)00686-6.

    Article  CAS  Google Scholar 

  • Pilinis, C., Pandis, S. N., & Seinfeld, J. H. (1995). Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition. Journal of Geophysical Research, 100(D9), 18739–18754. https://doi.org/10.1029/95JD02119.

    Article  Google Scholar 

  • Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardio- pulmonary mortality, and long-term exposure to fine particulate air pollution. Journal of American Medical Association, 287, 1132–1141.

    Article  CAS  Google Scholar 

  • Rajput, P., Sarin, M. M., Rengarajan, R., & Singh, D. (2011). Atmospheric polycyclic aromatic hydrocarbons (PAHs) from post-harvest biomass burning emissions in the Indo-Gangetic Plain: isomer ratios and temporal trends. Atmospheric Environment, 45(37), 6732–6740. https://doi.org/10.1016/j.atmosenv.2011.08.018.

    Article  CAS  Google Scholar 

  • Rajput, P., Sarin, M. M., Sharma, D., & Singh, D. (2014). Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: impact on mass absorption efficiency of elemental carbon. Environmental science. Processes & impacts, 16(10), 2371–2379. https://doi.org/10.1039/c4em00307a.

    Article  CAS  Google Scholar 

  • Rastogi, N., Singh, A., Singh, D., & Sarin, M. M. (2014). Chemical characteristics of PM 2 . 5 at a source region of biomass burning emissions: evidence for secondary aerosol formation. Environmental Pollution, 184, 563–569. https://doi.org/10.1016/j.envpol.2013.09.037.

    Article  CAS  Google Scholar 

  • Reid, J. S., Hobbs, P. V., Ferek, R. J., Blake, D. R., Martins, J. V., Dunlap, M. R., & Liousse, C. (1998). Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil. Journal of Geophysical Research, 103(98), 32059–32080. https://doi.org/10.1029/98JD00458.

    Article  CAS  Google Scholar 

  • Reid, J. S., Koppmann R., Eck T. F., & Eleuterio, D. P. (2004a). A review of biomass burning emissions, part II: intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics Discussions, 4(5), 5135–5200.

    Article  Google Scholar 

  • Reid, J. S., Eck, T. F., Christopher, S. A., Koppmann, R., Dubovik, O., Eleuterio, D. P., Holben, B. N., Reid, E. A., & Zhang, J. (2004b). A review of biomass burning emissions part III: intensive optical properties of biomass burning particles. Atmospheric Chemistry and Physics Discussions, 4(5), 5201–5260.

    Article  Google Scholar 

  • Revelle, W. (2015). Psych: procedures for personality and psychological research. Evanston: Northwestern University.

    Google Scholar 

  • Rider, P. R. (1930). A survey of the theory of small samples. Annals of Mathematics, 31(4), 577–628.

    Article  Google Scholar 

  • Rose, D., Wehner, B., Ketzel, M., Engler, C., & Voigtl, J. (2006). Atmospheric number size distributions of soot particles and estimation of emission factors. Atmospheric Chemistry and Physics, 6, 1021–1031.

    Article  CAS  Google Scholar 

  • Ross, J. L., Hobbs, P. V., & Holben, B. (1998). Radiative characteristics of regional hazes dominated by smoke from biomass burning in Brazil: closure tests and direct radiative forcing. Journal of Geophysical Research: Atmospheres, 103(D24), 31925–31941.

    Article  Google Scholar 

  • Saleh, R., Hennigan, C. J., McMeeking, G. R., Chuang, W. K., Robinson, E. S., Coe, H., Donahue, N. M., & Robinson, A. L. (2013). Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. Atmospheric Chemistry and Physics, 13(15), 7683–7693. https://doi.org/10.5194/acp-13-7683-2013.

    Article  CAS  Google Scholar 

  • Salem, A. A., Soliman, A. A., & El-Haty, I. A. (2009). Determination of nitrogen dioxide, sulfur dioxide, ozone, and ammonia in ambient air using the passive sampling method associated with ion chromatographic and potentiometric analyses. Air Quality, Atmosphere and Health, 2(3), 133–145. https://doi.org/10.1007/s11869-009-0040-4.

    Article  CAS  Google Scholar 

  • Sarwar, G., Schmeisky, H., Hussain, N., Muhammad, S., Tahir, M. A., & Saleem, U. (2009). Variations in nutrient concentrations of wheat and paddy as affected by different levels of compost and chemical fertilizer in normal soil. Pakistan Journal of Botany, 41(5), 2403–2410.

    Google Scholar 

  • Schultz, M. G., Heil, A., Hoelzemann, J. J., Spessa, A., Thonicke, K., Goldammer, J. G., Held, A. C., Pereira, J. M. C., & van het Bolscher, M. (2008). Global wildland fire emissions from 1960 to 2000. Global Biogeochemical Cycles, 22, 1–17. https://doi.org/10.1029/2007GB003031.

    Article  CAS  Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric chemistry and physics; from air pollution to climate change (SECOND). New Jersy: John Wiley & Sons, Inc..

    Google Scholar 

  • Sellaro, R., Sarver, E., & Baxter, D. (2015). A standard characterization methodology for respirable coal mine dust using SEM-EDX. Resources, 4(4), 939–957. https://doi.org/10.3390/resources4040939.

    Article  Google Scholar 

  • Sharma, A. R., Kharol, S. K., Badrinath, K. V. S., & Singh, D. (2010). Impact of agriculture crop residue burning on atmospheric aerosol loading – a study over Punjab state, India. Annales Geophysicae, 28(2), 367–379. https://doi.org/10.5194/angeo-28-367-2010.

    Article  CAS  Google Scholar 

  • Singh, S., Gupta, G. P., Kumar, B., & Kulshrestha, U. C. (2014). Comparative study of indoor air pollution using traditional and improved cooking stoves in rural households of northern India. Energy for Sustainable Development, 19(1), 1–6. https://doi.org/10.1016/j.esd.2014.01.007.

    Article  CAS  Google Scholar 

  • Singh, N., Mittal, S., Agarwal, R., Awasthi, A., & Gupta, P. (2010). Impact of rice crop residue burning on levels of SPM, SO2 and NO2 in the ambient air of Patiala (India). International Journal of Environmental Analytical Chemistry, 90(10), 829–843. https://doi.org/10.1080/03067310903023874.

    Article  CAS  Google Scholar 

  • Singh, C. P., & Panigrahy, S. (2011). Characterisation of residue burning from agricultural system in India using space based observations. Journal of the Indian Society of Remote Sensing, 39(3), 423–429. https://doi.org/10.1007/s12524-011-0119-x.

    Article  Google Scholar 

  • Sokolik, I. N., & Toon, O. B. (1999). Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. Journal of Geophysical Research, 104(D8), 9423–9444. https://doi.org/10.1029/1998JD200048.

    Article  CAS  Google Scholar 

  • Stanier, C. O., Khlystov, A. Y., & Pandis, S. N. (2004). Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS). Atmospheric Environment, 38(20), 3275–3284. https://doi.org/10.1016/j.atmosenv.2004.03.020.

    Article  CAS  Google Scholar 

  • Varotsos, C., Alexandris, D., Chronopoulos, G., & Tzanis, C. (2001). Aircraft observations of the solar ultraviolet irradiance throughout the troposphere. Journal of Geophysical Research, 106(D14), 843–854.

    Article  Google Scholar 

  • Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (Fourth ed.pp. 301–330). New York: Springer.

    Google Scholar 

  • Wiscombe, W. J., & Grams, G. W. (1976). The backscattered fraction in two-stream approximations. Journal of the Atmospheric Sciences, 33(12), 2440–2451. https://doi.org/10.1175/1520-0469(1976)033<2440:TBFITS>2.0.CO;2.

    Article  Google Scholar 

  • Yokelson, R. J., Karl, T., Artaxo, P., Blake, D. R., Christian, T. J., Griffith, D. W. T., Guenther, A., & Hao, W. M. (2007). The tropical forest and fire emissions experiment: overview and air-borne fire emission factor measurements. Atmospheric Chemistry and Physics, 7, 5175–5196.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful for Advanced Instrumentation Research Facility (AIRF) in JNU that accommodated the necessary analysis of aerosol samples under SEM-EDX. We also extend our thanks to Council of Scientific and Industrial Research (CSIR), Govt. of India (20-12/2009(ii) EU-IV), for supporting the first author to carry out the research work. We also extend our thanks to the reviewers for their significant remarks in improving the quality of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Acharya.

Electronic supplementary material

ESM 1

(CSV 29.6 kb)

ESM 2

(DOCX 223 kb)

ESM 3

(DOCX 29.9 kb)

ESM 4

(XLSX 19.4 kb)

ESM 5

(DOCX 15.6 kb)

ESM 6

(DOCX 15.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, P., Sreekesh, S., Kulshrestha, U. et al. Characterisation of emission from open-field burning of crop residue during harvesting period in north-west India. Environ Monit Assess 190, 663 (2018). https://doi.org/10.1007/s10661-018-6999-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6999-2

Keywords

Navigation