Skip to main content

Advertisement

Log in

Mapping sites of reef vulnerability along lagoons of Lakshadweep archipelago, Indian Ocean

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Tissue degradation and mediated mortality have turned into a major threat to coral reef systems around the world. Detailed knowledge on interactions of prime biological factors that mediate tissue loss and mortality is of paramount importance in understanding the prevailing reef health scenario and to trial management actions. In the present study, a series of benthic surveys were conducted in Lakshadweep islands to understand the interactions of plausible biological factors in causing tissue loss and mediated mortality. Interactions of biological scenarios were prioritized using hierarchical regression analysis. The hierarchical regression model analysis revealed black band disease (β = 0.59; p < 0.001) and algal interactions (β = 0.48; p < 0.001) as the major factors responsible for tissue-loss-mediated coral mortality in the region. The observations from the hierarchical analysis were used to derive vulnerability maps based on weighted overlay analysis. The vulnerability mapping revealed that lagoon of Kalpeni Island is very highly vulnerable to coral degradation with 683.5 ha followed by Kavaratti (70.2 ha), Bangaram (70 ha), and Amini (47 ha). Chethalath and Agatti lagoons were inferred as low vulnerable sites where coral reefs can sustain. The vulnerability maps derived can be used as a baseline observation to identify areas of very high vulnerability and specific stressor prevalent in those sites. This will be helpful in defining stressor and site-specific management plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abelson, A. (2006). Artificial reefs vs. coral transplantation as restoration tools for mitigating coral reef deterioration: benefits, concerns, and proposed guidelines. Bulletin of Marine Science, 78, 151–159.

    Google Scholar 

  • Antonius, A. (1981). The ‘band’ diseases in coral reefs. Proceedings of 4th International Coral Reef Symposium, 2, 6–14.

    Google Scholar 

  • Arthur, R. (2000). Coral bleaching and mortality in three Indian Ocean reef regions during an El Niño southern oscillation event. Current Science, 79, 1723–1729.

    Google Scholar 

  • Arthur, R., Done, T. J., Marsh, H., & Harriott, V. (2006). Local processes strongly influence post-bleaching benthic recovery in the Lakshadweep Islands. Coral Reefs, 25(3), 427–440.

  • Bak, R. P. M., & Luckhurstm, B. E. (1980). Constancy and change in coral reef habitats along depth gradients at Curaçao. Oecologia, 47, 145–155.

    Article  Google Scholar 

  • Ban, S. S., Graham, N. A., & Connolly, S. R. (2014). Evidence of multiple stressor interactions and effects on coral reefs. Global Change Biology, 20(3), 681–697.

    Article  Google Scholar 

  • Barneah, O., Ben-Dov, E., Kramarsky-Winter, E., & Kushmaro, A. (2007). Characterization of black band disease in Red Sea stony corals. Environmental Microbiology, 9(8), 1995–2006.

    Article  CAS  Google Scholar 

  • Barrett, C. B., Brandon, K., Gibson, C., & Gjertsen, H. (2001). Conserving tropical biodiversity amid weak institutions. Bioscience, 51, 497–502.

    Article  Google Scholar 

  • Bellwood, D. R., Hughes, T. P., Folke, C., & Nyström, M. (2004). Confronting the coral reef crisis. Nature, 429, 827–833.

    Article  CAS  Google Scholar 

  • Borger, J. L., & Colley, S. (2010). The effects of a coral disease on the reproductive output of Montastraea faveolata (Scleractinia: Faviidae). Revista de Biología Tropical, 58(3), 99–110.

    Google Scholar 

  • Bowden-Kerby, A. (1997). Coral transplantation in sheltered habitats using unattached fragments and cultured colonies. In: Proceedings of the 8th International Coral Reef Symposium, 2, 2063–2068.

  • Brander, L. M., Rehdanz, K., Tol, R. S. J., & Van Beukering, P. J. H. (2012). The economic impact of ocean acidification on coral reefs. Climate Change Economics, 3, 29 p.

  • Bridge, T. C. L., Hoey, A. S., Campbell, S. J., et al. (2014). Depth-dependent mortality of reef corals following a severe bleaching event: implications for thermal refuges and population recovery. F1000 Research, 2, 187.

    Google Scholar 

  • Brook, B., Sodhi, N., & Bradshaw, C. (2008). Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23(8), 453–460.

  • Bruno, J. F., Selig, E. R., Casey, K. S., et al. (2007). Thermal stress and coral cover as drivers of coral disease outbreaks. PlosBiology, 5, 1220–1227.

    CAS  Google Scholar 

  • Bythell, J. C., Gladfelter, E. H., & Bythell, M. (1993). Chronic and catastrophic natural mortality of three common Caribbean reef corals. Coral Reefs, 12, 143–152.

    Article  Google Scholar 

  • Carpenter, K. E., Abrar, M., Aeby, G., Aronson, R. B., et al. (2008). One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science, 321(5888), 560–563.

    Article  CAS  Google Scholar 

  • Chandramohan, P., Anand, N. M., & Nayak, B. U. (1993). Shoreline dynamics of the Lakshadweep islands. Indian Journal of Geo-Marine Sciences, 22, 198–202.

    Google Scholar 

  • Cinner, J. E., Pratchett, M. S., Graham, N. A. J., Messmer, V., et al. (2015). A framework for understanding climate change impacts on coral reef social–ecological systems. Regional Environmental Change, 16(4), 1133–1146.

    Article  Google Scholar 

  • Collins, M. G., Steiner, F. R., & Rushman, M. J. (2001). Land-use suitability analysis in the United States: historical development and promising technological achievements. Environmental Management, 28(5), 611–621.

    Article  CAS  Google Scholar 

  • Conklin, E. J., & Stimson, J. (2004). An attempt to increase numbers of herbivorous fishes as a means of controlling populations of fleshy macroalgae on coral reefs in Kaneohe Bay, Hawaii. Pacific Science, 58(2), 189–200.

    Article  Google Scholar 

  • Côté, I. M., Darling, E. S., & Brown, C. J. (2016). Interactions among ecosystem stressors and their importance in conservation. Proceedings of the Royal Society B: Biological Sciences, 283(1824), 20152592. doi:10.1098/rspb.2015.2592.

    Article  Google Scholar 

  • De’ath, G., Fabricius, K. E., Sweatman, H., & Puotinen, M. (2012). The 27-year decline in coral cover in the Great Barrier Reefs and its causes. Proceedings of the National Academy of Sciences, 109(44), 17995–17999.

    Article  Google Scholar 

  • Edmunds, P. J. (2000). Patterns in the distribution of juvenile corals and coral reef community structure in St. John, US Virgin Islands. Marine Ecology Progress Series, 202, 113–124.

    Article  Google Scholar 

  • Edwards, A. J., & Gomez, A. D. (2007). Reef restoration concepts and guidelines: making sensible management choices in the face of uncertainty. Coral Reef Targeted Research & Capacity building for Management Programme, St. Lucia, Australia, 38p.

  • English, S., Wilkinson, C., & Baker, V. (1997). Survey manual for tropical marine resources. Australian Institute of Marine Science, Townsville Australia, 2, 390.

  • Fabricius, K. E., & Wolanski, E. (2000). Rapid smothering of coral reef organisms by muddy marine snow. Estuarine, Coastal and Shelf Science, 50, 115–120.

    Article  Google Scholar 

  • Fabricius, K. E. (2005). Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Pollution Bulletin, 50, 125–146.

    Article  CAS  Google Scholar 

  • Fabricius, K., Wild, C., Wolanski, E., & Abele, D. (2003). Effects of transparent exopolymer particles (TEP) and muddy terrigenous sediments on the survival of hard coral recruits. Estuarine, Coastal and Shelf Science, 57, 613–621.

    Article  CAS  Google Scholar 

  • Ferrario, F., Beck, M. W., Storlazzi, C. D., Micheli, F., Shepard, C.C., & Airoldi, L. (2014). The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nature Communications. 5, doi:10.1038/ncomms4794.

  • Fisher, R., O’Leary, R. A., Low-Choy, S., Mengersen, K., Knowlton, N., Brainard, R. E., & Caley, M. J. (2015). Species richness on coral reefs and the pursuit of convergent global estimates. Current Biology, 25, 500–505.

    Article  CAS  Google Scholar 

  • Flores, F., Hoogenboom, M. O., Smith, L. D., Cooper, T. F., et al. (2012). Chronic exposure of corals to fine sediments: lethal and sub-lethal impacts. PloS One, 7(5), e37795. doi:10.1371/journal.pone.0037795.

    Article  CAS  Google Scholar 

  • Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., & Holling, C. S. (2004). Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics, 35, 557–581.

  • Frias-Lopez, J., Klaus, J. S., Bonheyo, G. T., & Fouke, B. W. (2004). Bacterial community associated with black band disease in corals. Appliedand Environmental Microbiology, 70, 5955–5962.

    Article  CAS  Google Scholar 

  • Garnier, J., Silva, I., Davidson, J., Hill, N., Muaves, L., Mucaves, S., et al. (2008). Co-management of the reef at Vamizi Island, Northern Mozambique. CORDIO Status Report 2008. http://www.cordioea.org.

  • Goldman, M. (2003). Partitioned nature, privileged knowledge: community-based conservation in Tanzania. Development and Change, 34, 833–862.

    Article  Google Scholar 

  • Harriot, V. J. (1985). Mortality rates of scleractinian corals before and during a mass bleaching event. Marine Ecology Progress Series, 21, 81–88.

    Article  Google Scholar 

  • Hobbs, J. P. A., Frisch, A. J., Newman, S. J., & Wakefield, C. B. (2015). Selective impact of disease on coral communities: outbreak of white syndrome causes significant total mortality of Acropora plate corals. PloS One, 10(7), e0132528. doi:10.1371/journal.pone.0132528.

    Article  Google Scholar 

  • Hoctor, T., Oetting, J., Stys, B., & S. Beyeler, (2009). Report on completion of the CLIP database version 1.0: P.91. http://conservation.dcp.ufl.edu/CLIP%20Report%201.0.pdf.

  • Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., et al. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737–1742.

    Article  CAS  Google Scholar 

  • Hughes, T. P. (1994). Catastrophes, phase-shifts, and large-scale degradation of a Caribbean coral reef. Science, 265, 1547–1551.

    Article  CAS  Google Scholar 

  • Hughes, T. P., & Jackson, J. B. C. (1980). Do corals lie about their age? Some demographic consequences of partial mortality, fission and fusion. Science, 209, 713–714.

    Article  CAS  Google Scholar 

  • Hughes, T. P., & Jackson, J. B. C. (1985). Population dynamics and life histories of foliaceous corals. Ecological Monographs, 55(2), 141–166.

  • Jacobson D. M. (2012). An outbreak of a chronic tissue loss syndrome among massive corals on Majuro Atoll. In: Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9–13.

  • Kannan, L., & Thangaradjou, T. (2005, September). Prospects of seaweed cultivation in India vis-a-vis world. In International Conference and Exhibition on Soilless Culture: ICESC 2005 742 (pp. 191–195).

  • Knowlton, N. (1992). Thresholds and multiple stable states in coral reef community dynamics. American Zoologist, 32, 674–682.

    Article  Google Scholar 

  • Knowlton, N. (2004). Multiple “stable” states and the conservation of marine ecosystems. Progress in Oceanography, 60, 387–396.

    Article  Google Scholar 

  • Kuta, K. G., & Richardson, L. L. (1996). Abundance and distribution of black band disease on coral reefs in the northern Florida keys. Coral Reefs, 15, 219–223.

    Article  Google Scholar 

  • Kuta, K. G., & Richardson, L. L. (1997). Black band disease and the fate of diseased coral colonies in the Florida Keys. Proceedings of the 8th International Coral Reef Symposium, 1, 575–578.

    Google Scholar 

  • Lehtomäki, J., Tomppo, E., Kuokkanen, P., Hanski, I., & Moilanen, A. (2009). Applying spatial conservation prioritization software and high-resolution GIS data to a national-scale study in forest conservation. Forest Ecology and Management, 258(11), 2439–2449.

  • Li, Y., & Nigh, T. (2011). GIS-based prioritization of private land parcels for biodiversity conservation: a case study from the current and eleven point conservation opportunity areas, Missouri. Applied Geography, 31(1), 98–107.

    Article  CAS  Google Scholar 

  • Liddell, W. D., & Ohlhorst, S. L. (1992). Ten years of disturbance and change on a Jamaican fringing reef. In: Proceedings of the 7th International Coral Reef Symposium, Guam, pp. 149–155.

  • Madhusudan, M. D., & Raman, T. R. S. (2003). Conservation as if biological diversity matters: preservation versus sustainable use in India. Conservation and Society, 1, 49–59.

    Google Scholar 

  • McManus, J. W., Menez, L. A. B., Kesner-Reyes, K. N., Vergara, S. G., & Ablan, M. C. (2000). Coral reef fishing and coral-algal phase shifts: implication for global reef status. ICES Journal Marine Science, 57, 572–578.

    Article  Google Scholar 

  • Meesters, E. H., Noordeloos, M., & Bak, R. P. M. (1994). Damage and regeneration: links to growth in the reef-building coral Montastrea annularis. Marine Ecology Progress Series, 112, 119–128.

    Article  Google Scholar 

  • Meesters, E. H., Pauchli, W., & Bak, R. P. M. (1997). Predicting regeneration of physical damage on a reef-building coral by regeneration capacity and lesion shape. Marine Ecology Progress Series, 146, 91–99.

    Article  Google Scholar 

  • Miller, M. W. (1998). Coral seaweed competition and the control of reef community structure within and between latitudes. Oceanography and Marine Biology—An Annual Review, 36, 65–96.

    Google Scholar 

  • Morrow, K. M., Paul, V. J., Lilesand, M. R., & Chadwick, N. E. (2011). Allelochemicals produced by Caribbean macroalgae and cyanobacteria have species-specific effects on reef coral microorganisms. Coral Reefs, 30, 309–320.

    Article  Google Scholar 

  • Mumby, P. J., Chisholm, J. R. M., Edwards, A. J., Clark, C. D., Roark, E. B., Andrefouet, S., & Jaubert, J. (2001). Unprecedented bleaching-induced mortality in Porites sp. at Rangiroa atoll, French Polynesia. Marine Biology, 139, 183–189.

    Article  Google Scholar 

  • Mumby, P. J., Hastings, A., & Edwards, H. J. (2007). Thresholds and the resilience of Caribbean coral reefs. Nature, 450, 98–101.

    Article  CAS  Google Scholar 

  • Munday, P. L., & Jones, G. P. (1998). The ecological implications of small body size among coral-reef fishes. Oceanography and marine Biology—An Annual Review, 36, 373–411.

    Google Scholar 

  • Nowlis, J. S., Roberts, C. M., Smith, A. H., & Siirila, E. (1997). Human-enhanced impacts of a tropical storm on nearshore coral reefs. Ambi, 26, 515–521.

    Google Scholar 

  • Oliver, M. A., & Webster, R. (1990). Kriging: a method of interpolation for GIS. International Journal of Geographical Information Systems, 4, 313–332.

    Article  Google Scholar 

  • Pandolfi, J. M., Bradbury, R. H., Sala, E., Hughes, T. P., et al. (2003). Global trajectories of the long-term decline of coral reef ecosystems. Science, 301, 955–958.

    Article  CAS  Google Scholar 

  • Phua, M., & Minowa, M. (2005). A GIS-based multi-criteria decision making approach to forest conservation planning at a landscape scale: a case study in the Kinabalu area, Sabah, Malaysia. Landscape and Urban Planning, 71(2), 207–222.

    Article  Google Scholar 

  • Pillai, C. S. G. (1971). The distribution of shallow water stony corals at Minicoy atoll in the Indian Ocean with a checklist of species. Atoll Research Bulletin, 141, 1–12.

    Google Scholar 

  • Pillai, C. S. G. (2010). A review of the status of corals and coral reefs of India. Indian Journal of animal Sciences, 80(4), 53–56.

    Google Scholar 

  • Pillai, C. S. G., & Jasmine, S. (1989). The fauna of Lakshadweep. Bulletin of the Central Marine Fisheries Research Institute, 43, 179–194.

    Google Scholar 

  • Pillai, C. S. G. (1986). Recent corals from the south-east coast of India. In P. S. B. R. James (Ed.), Recent advances in marine biology (pp. 07–201). New Delhi: Today and Tomorrow Printers and Publishers.

    Google Scholar 

  • Pratchett, M. S., Pisapia, C., & Sheppard, C. (2013). Background mortality rates for recovering populations of Acropora cytherea in the Chagos archipelago, central Indian Ocean. Marine Environmental Research, 86, 29–34.

    Article  CAS  Google Scholar 

  • R Development Core Team. (2008). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

  • Raghuraman, R., Raghunathan, C., & Venkataraman, K. (2013). Present status of coral reefs in India. In K. Venkataraman, C. Sivaperuman, & C. Raghunathan (Eds.), Ecology and conservation of tropical marine faunal communities (pp. 351–379). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-38200-0_23.

    Chapter  Google Scholar 

  • Rasher, D. B., Stout, E. P., Engel, S., Kubanek, J., & Hay, M. E. (2011). Macro algal terpenes function as allelopathic agents against reef corals. Proceedings of the National Academy of Sciences, 108, 17726–17731.

    Article  CAS  Google Scholar 

  • Ravindran, J., & Raghukumar, C. (2006). Histological observations on the scleractinian coral Porites lutea affected by pink-line syndrome. Current Science, 90(5), 720–724.

    Google Scholar 

  • Report on Visit to Lakshadweep (2008). A coral reef wetland included under National Wetland Conservation and Management Programme of the Ministry of Environment & Forests. Planning Commission Govt. of India. http://planningcommission.gov.in/reports/E_F/Lakshadweep.pdf.

  • Richardson L. L., & Carlson R. G. (1993) Behavioral and chemical aspects of Black Band disease of corals: an in situ field and laboratory study. In: Proceedings of the American Academy of Underwater Sciences 13th Annual Scientific Diving Symposium. 107–116.

  • Rogers, C. S. (1990). Responses of coral reefs and reef organisms to sedimentation. Marine Ecology Progress Series, 62, 185–202.

    Article  Google Scholar 

  • Rogers, C. S., Muller, E., Spitzack, T., & Miller, J. (2009). Extensive coral mortality in the US Virgin Islands in 2005/2006: a review of the evidence for synergy among thermal stress, coral bleaching and disease. Caribbean Journal of Science, 45(2–3), 204–214.

    Article  Google Scholar 

  • Rosenberg, E., & Ben-Haim, Y. (2002). Microbial diseases of corals and global warming. Environmental Microbiology, 4, 318–326.

    Article  Google Scholar 

  • Rotjan, R. D., & Lewis, S. M. (2005). Selective predation by parrot-fishes on the reef coral Porites astreoides. Marine Ecology Progress Series, 305, 193–201.

    Article  CAS  Google Scholar 

  • Rotjan, R. D., Dimond, J. L., Thornhill, D. J., Leichter, J. J., et al. (2006). Chronic parrotfish grazing impedes coral recovery after bleaching. Coral Reefs, 25, 361–368.

    Article  Google Scholar 

  • Rutzler, K., et al. (1983). The black band disease of Atlantic reef corals. III. Distribution, ecology, and development. PSZNI, Marine Ecology, 4(4), 329–258.

    Article  Google Scholar 

  • Sanchez, J. A., Gil, M. F., Chasqui, L. H., & Alvarado, E. M. (2004). Grazing dynamics on a Caribbean reef-building coral. Coral Reefs, 23, 578–583.

    Google Scholar 

  • Schröter, D., Cramer, W., et al. (2005). Ecosystem service supply and vulnerability to global change in Europe. Science, 310, 1333–1337.

    Article  Google Scholar 

  • Séré, M. G., Chabanet, P., Turquet, J., Quod, J. P., et al. (2015). Identification and prevalence of coral diseases on three western Indian Ocean coral reefs. Disease of Aquatic Organisms, 114, 249–261.

    Article  Google Scholar 

  • Stimson, J. (1985). The effect of shading by the table coral Acropora hyacinthus on understory corals. Ecology, 66, 40–53.

    Article  Google Scholar 

  • Store, R., & Kangas, J. (2001). Integrating spatial multi-criteria evaluation and expert knowledge for GIS-based habitat suitability modeling. Landscape and Urban Planning, 55(2), 79–93.

    Article  Google Scholar 

  • Swierts, T., Vermeij, M. J. (2016). Competitive interactions between corals and turf algae depend on coral colony form. Rodriguez-Lanetty M, Ed. Peer J, 4, e1984. doi:10.7717/peerj.1984.

  • Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). New York: Allyn and Bacon.

  • Thinesh, T., Mathews, G., & Edward, J. K. P. (2011). Coral disease prevalence in the Palk Bay, southeastern India—with special emphasis to black band. Indian Journal of Geo-Marine Sciences, 40, 813–820.

    CAS  Google Scholar 

  • Thongtham N, & Chansang, H. (2008). Transplantation of Porites lutea to rehabilitate degraded coral reef at Maiton Island, Phuket, Thailand. In: Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, Florida.

  • Van Veghel, M. L. J., & Bak, R. P. M. (1994). Reproductive characteristics of the polymorphic Caribbean reef building coral Monastrea annularis. III. Reproduction in damaged and regenerating colonies. Marine Ecology Progress Series, 109, 229–233.

    Article  Google Scholar 

  • Vanwoesik, R. (1998). Lesion healing on massive Porites spp. corals. Marine Ecology Progress Series, 164, 213–220.

    Article  Google Scholar 

  • Viehman, S., Mills, D. K., Meichel, G. W., & Richardson, L. L. (2006). Culture and identification of Desulfovibrio spp. from corals infected by black band disease on Dominican and Florida Keys reefs. Disease of Aquatic Organisms, 69, 119–127.

    Article  CAS  Google Scholar 

  • West, K., & Van Woesik, R. (2001). Spatial and temporal variance of river discharge on Okinawa (Japan): inferring the temporal impact on adjacent coral reefs. Marine Pollution Bulletin, 42, 864–872.

    Article  CAS  Google Scholar 

  • Williams, G. J., Aeby, G. S., Cowie, R. O. M., & Davy, S. K. (2010). Predictive modeling of coral disease distribution within a reef system. PloS One. doi:10.1371/journal.pone.0009264.

  • Yap, H. T., Alino, P. M., & Gomez, E. D. (1992). Trends in growth and mortality of three coral species (Anthozoa: Scleractinia), including effects of transplantation. Marine Ecology Progress Series, 83, 91–101.

    Article  Google Scholar 

  • Zvuloni, A., Artzy-Randrup, Y., Stone, L., Kramarsky-Winter, E., Barkan, R., & Loya, Y. (2009). Spatio-temporal transmission patterns of black-band disease in a coral community. PloS One, 4(4), e4993.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director and Dean of CAS in Marine Biology and authorities of Annamalai University for support and encouragement. The authors also thank the National Remote Sensing Centre, Hyderabad, for providing financial support and DST and Department of Environment and Forest, Lakshadweep, for providing necessary permission to conduct the coral survey. The contents and views reported in this manuscript are of individual authors and not reflect the views and positions of the institutions they belong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thangaradjou T.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

R, R., L, S., M, M. et al. Mapping sites of reef vulnerability along lagoons of Lakshadweep archipelago, Indian Ocean. Environ Monit Assess 189, 494 (2017). https://doi.org/10.1007/s10661-017-6175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6175-0

Keywords

Navigation