Skip to main content
Log in

Use of modified clays for removal of phosphorus from aqueous solutions

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Phosphorus (P) removal from aqueous solutions was investigated using modified bentonite, calcite, kaolinite, and zeolite with FeCl3, CaCl2, and NaCl. The maximum sorption capacity of P was obtained by modified adsorbents with Fe3+ ions (Fe-adsorbents). The results showed that P sorption capacity by Fe-adsorbents (bentonite (1.31 mg g−1), calcite (1.97 mg g−1), kaolinite (1.31 mg g−1), and zeolite (1.58 mg g−1)) was improved by ∼467, 107, 409, and 427 %, respectively, compared to unmodified adsorbents (bentonite (0.28 mg g−1), calcite (1.82 mg g−1), kaolinite (0.32 mg g−1), and zeolite (0.37 mg g−1)). Sorption isotherms were well described by the Freundlich model. Desorption experiments showed that the desorption capacity was in order of unmodified adsorbents > modified adsorbents with Na+ ions (Na-adsorbents) > modified adsorbents with Ca2+ ions (Ca adsorbents) > Fe-adsorbents. Effect of pH and ion strength was also investigated. At different pH, changes in the ionic strength had little effect on the adsorption. Results showed that double-layer model (DLM) could model P adsorption onto modified adsorbents over a wide range of pH and varying ionic strength. According to the scanning electron microscopy (SEM) images and saturation indices (SIs), high P removal by adsorbents was partly due to the P precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Borggaard, O. K., Raben-Lange, B., Gimsing, A. L., & Strobel, B. W. (2005). Influence of humic substances on phosphate adsorption by aluminium and iron oxides. Geoderma, 127, 270–279.

    Article  CAS  Google Scholar 

  • Borgnino, L., Avena, M., & De Pauli, C. P. (2009). Synthesis and characterization of Fe(III)-montmorillonites for phosphate adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 341, 46–52.

    Article  CAS  Google Scholar 

  • Chen, J., Kong, H., Wu, D., Chen, X., Zhang, D., & Sun, Z. (2007). Phosphate immobilization from aqueous solution by fly ashes in relation to their composition. Journal of Hazardous Materials, 139, 293–300.

    Article  CAS  Google Scholar 

  • Chorus I, Mur L (1999) Preventative measures. In: Chorus, I., Bartram, J. (Eds.), Toxic Cyanobacteria in Water: A Guide to their Public Health Consequences, Monitoring and Management. E and FN Spon Publishers

  • Cooney, D. O. (1999). Adsorption design for wastewater treatment. Boca Raton: Lewis.

    Google Scholar 

  • Cucarella, V., & Renman, G. (2009). Phosphorus sorption capacity of filter materials used for on- sote wastewater treatment determined in batch experiments – a comparative study. Journal of Environmental Quality, 38, 381–392.

    Article  CAS  Google Scholar 

  • de-Bashan, L. E., & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Research, 38, 4222–4246.

    Article  CAS  Google Scholar 

  • Devau, N., Hinsinger, P., Le Cadre, E., Colomb, B., & Ge’ Rard, F. (2011). Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils. Geochimica et Cosmochimica Acta, 75, 2980–2996.

    Article  CAS  Google Scholar 

  • Ersoy, B., & Elik, M. S. C. (2002). Electrokinetic properties of clinoptilolite with mono- and multivalent electrolytes. Microporous and Mesoporous Materials, 55, 305–312.

    Article  CAS  Google Scholar 

  • Freeman, J. S., & Rowell, D. L. (1981). The adsorption and precipitation of phosphate onto calcite. Journal of Soil Science, 32, 75–84.

    Article  CAS  Google Scholar 

  • Grzmil, B., & Wronkowski, J. (2006). Removal of phosphates and fluorides from industrial wastewater. Desalination, 189, 261–268.

    Article  CAS  Google Scholar 

  • Gustafsson, J. P. (2005). Visual MINTEQ ver 2.32. Royal institute of technology, Stokholm, Sweden, Dapartment of land and water resources engineering < http://hem.bredband.net/b108693

  • Haghseresht, F., Wang, S., & Do, D. D. (2009). A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters. Applied Clay Science, 46, 369–375.

    Article  CAS  Google Scholar 

  • House, W. A., & Denison, F. H. (2000). Factors influencing the measurements of equilibrium phosphate concentrations in river sediments. Water Research, 34, 1187–1200.

    Article  CAS  Google Scholar 

  • Huang, H. M., Xiao, X. M., Yan, B., & Yang, L. P. (2010). Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. Journal of Hazardous Materials, 175, 247–52.

    Article  CAS  Google Scholar 

  • Huo, H., Lin, H., Dong, Y., Cheng, H., Wang, H., & Cao, L. (2012). Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite. Journal of Hazardous Materials, 229–230, 292–297.

    Article  Google Scholar 

  • Klapper, H. (1991). Control of Eutrophication in Inland Waters. Chichester: Ellis Horwood New York. 337pp.

    Google Scholar 

  • Klibanski, S. B., Litor, M. I., & Shenker, M. (2007). Overestimation of phosphorus adsorption capacity in reduced soils: An artifact of typical batch adsorption experiments. Soil Science Society of America Journal, 71, 1128–1136.

    Article  Google Scholar 

  • Koretsky, C. M. (2000). The significance of surface complexation reactions in hydrologic systems: a geochemist’s perspective. Journal of Hydrology, 230, 127–171.

    Article  CAS  Google Scholar 

  • Kostura, B., Kulveitová, H., & Leško, J. (2005). Blast furnace slags as sorbents of phosphate from water solutions. Water Research, 39, 1795–1802.

    Article  CAS  Google Scholar 

  • Ler, A., & Stanforth, R. (2003). Evidence for surface precipitation of phosphate on goethite. Environmental Science & Technology, 37, 2694–2700.

    Article  CAS  Google Scholar 

  • Li, Z., Jean, J. S., Jiang, W. T., Chang, P. H., Chen, C. J., & Liao, L. (2011). Removal of arsenic from water using Fe-exchanged natural zeolite. Journal of Hazardous Materials, 187, 318–323.

    Article  CAS  Google Scholar 

  • Li, Z., & Shuman, L. M. (1997). Mobility of Zn, Cd, Pb in soils as affected by poultry litter extract - I. Leaching in soil column. Environmental Pollution, 95, 219–226.

    Article  CAS  Google Scholar 

  • Lin, J., Zhan, Y., & Zhu, Z. (2011). Evaluation of sediment capping with active barrier systems (ABS) using calcite/zeolite mixtures to simultaneously manage phosphorus and ammonium release. The Science of the Total Environment, 409, 638–646.

    Article  CAS  Google Scholar 

  • Ma, J., & Zhu, L. (2006). Simultaneous sorption of phosphate and phenanthrene to inorgano–organo-bentonite from water. Journal of Hazardous Materials, 36, 982–988.

    Article  Google Scholar 

  • Moharami, S., & Jalali, M. (2013). Removal of phosphorus from aqueous solution by Iranian natural adsorbents. Chemical Engineering Journal, 223, 328–339.

    Article  CAS  Google Scholar 

  • Morse, G. K., Brett, S. W., Guy, J. A., & Lester, J. N. (1998). Review: phosphorus removal and recovery technologies. The Science of the Total Environment, 212, 69–81.

    Article  CAS  Google Scholar 

  • Onyango, M. S., Kuchar, D., Kubota, M., & Matsuda, H. (2007). Adsorptive removal of phosphate ions from aqueous solution using synthetic zeolite. Industrial and Engineering Chemistry Research, 46, 894–900.

    Article  CAS  Google Scholar 

  • Rivera-Utrilla, J., Bautista-Toledo, I., Ferro-Garcy, M. A., & Moreno-Castill, C. (2001). Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. Journal of Chemical Technology and Biotechnology, 76, 1209–1215.

    Article  CAS  Google Scholar 

  • SØ, H. U., Postma, D., Jakobsen, R., & Larsen, F. (2012). Competitive adsorption of arsenate and phosphate onto calcite; experimental results and modeling with CCM and CD-MUSIC. Geochimica et Cosmochimica Acta, 93, 1–13.

    Article  Google Scholar 

  • SØ, H. U., Postma, D., Jakobsen, R., & Larsen, F. (2011). Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling. Geochimica et Cosmochimica Acta, 75, 2911–2923.

    Article  Google Scholar 

  • Vohla, C., Koiv, M., Bavor, H. J., Chazarenc, F., & Mander, U. (2011). Filter materials for phosphorus removal from wastewater in treatment wetlands—a review. Ecological Engineering, 37, 70–89.

    Article  Google Scholar 

  • Wingenfelder, U., Nowack, B., Furrer, G., & Schulin, R. (2005). Adsorption of Pb and Cd by amine-modified zeolite. Water Research, 39, 3287–3297.

    Article  CAS  Google Scholar 

  • Wu, D., Zhang, B., Li, C., Zhang, Z., & Kong, H. (2006). Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment. Journal of Colloid and Interface Science, 304, 300–306.

    Article  CAS  Google Scholar 

  • Xiong, J., He, Z., Mahmood, Q., & Liu, D. (2008). Phosphate removal from solution using steel slag through magnetic separation. Journal of Hazardous Materials, 152, 211–215.

    Article  CAS  Google Scholar 

  • Yan, L. G., & Xu, Y. Y. (2010). Adsorption of phosphate from aqueous solution by hydroxyl aluminum, hydroxy-iron and hydroxy-iron–aluminum pillared bentonites. Journal of Hazardous Materials, 179, 244–250.

    Article  CAS  Google Scholar 

  • Yin, H., Yun, Y., Zhang, Y., & Fan, C. (2011). Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite. Journal of Hazardous Materials, 198, 362–369.

    Article  CAS  Google Scholar 

  • Zamparas, M., Gianni, A., Stathi, P., Deligiannakis, Y., & Zacharias, I. (2012). Removal of phosphate from natural waters using innovative modified bentonites. Applied Clay Science, 62–63, 101–106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Moharami.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moharami, S., Jalali, M. Use of modified clays for removal of phosphorus from aqueous solutions. Environ Monit Assess 187, 639 (2015). https://doi.org/10.1007/s10661-015-4854-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4854-2

Keywords

Navigation