Skip to main content
Log in

Assessing the influence of topography and canopy structure on Douglas fir throughfall with LiDAR and empirical data in the Santa Cruz mountains, USA

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Atmospheric inputs to forest ecosystems vary considerably over small spatial scales due to subtle changes in relief and vegetation structure. Relationships between throughfall fluxes (ions that pass through the canopy in water), topographic and canopy characteristics derived from sub-meter resolution light detection and ranging (LiDAR), and field measurements were compared to test the potential utility of LiDAR in empirical models of atmospheric deposition. From October 2012 to May 2013, we measured bulk (primarily wet) deposition and sulfate–S, chloride (Cl), and nitrate–N fluxes beneath eight clusters of Douglas fir trees differing in size and canopy exposure in the Santa Cruz Mountains, California. For all trees sampled, LiDAR data were used to derive canopy surface height, tree height, slope, and canopy curvature, while tree height, diameter (DBH), and leaf area index were measured in the field. Wet season throughfall fluxes to Douglas fir clusters ranged from 1.4 to 3.8 kg S ha−1, 17–54 kg Cl ha−1, and 0.2–4 kg N ha−1. Throughfall S and Cl fluxes were highest under clusters with large trees at topographically exposed sites; net fluxes were 2–18-fold greater underneath exposed/large clusters than all other clusters. LiDAR indices of canopy curvature and height were positively correlated with net sulfate–S fluxes, indicating that small-scale canopy surface features captured by LiDAR influence fog and dry deposition. Although tree diameter was more strongly correlated with net sulfate–S throughfall flux, our data suggest that LiDAR data can be related to empirical measurements of throughfall fluxes to generate robust high-resolution models of atmospheric deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aber, J. D., Goodale, C. L., Ollinger, S. V., Smith, M. L., Magill, A. H., Martin, M. E., et al. (2003). Is nitrogen deposition altering the nitrogen status of northeastern forests? BioScience, 53(4), 375–389.

    Article  Google Scholar 

  • Aikawa, M., Hiraki, T., & Tamaki, M. (2006). Comparative field study on precipitation, throughfall, stemflow, fog water, and atmospheric aerosol and gases at urban and rural sites in Japan. Science of the Total Environment, 366(1), 275–285.

    Article  CAS  Google Scholar 

  • Akay, A. E., Oğuz, H., Karas, I. R., & Aruga, K. (2009). Using LiDAR technology in forestry activities. Environmental Monitoring and Assessment, 151(1-4), 117–125.

    Article  Google Scholar 

  • Asbury, C. E., McDowell, W. H., Trinidad-Pizarro, R., & Berrios, S. (1994). Solute deposition from cloud water to the canopy of a Puerto Rican montane forest. Atmospheric Environment, 28(10), 1773–1780.

    Article  CAS  Google Scholar 

  • Beckett, K. P., Freer-Smith, P. H., & Taylor, G. (2000). Particulate pollution capture by urban trees: Effect of species and windspeed. Global Change Biology, 6(8), 995–1003.

    Article  Google Scholar 

  • California Department of Forestry and Fire Protection. (2014). Soquel Demonstration State Forest General Forest Management Plan.

  • Clow, D. W., Roop, H. A., Nanus, L., Fenn, M. E., & Sexstone, G. A. (2015). Spatial patterns of atmospheric deposition of nitrogen and sulfur using ion-exchange resin collectors in Rocky Mountain National Park, USA. Atmospheric Environment, 101, 149–157.

    Article  CAS  Google Scholar 

  • De Schrijver, A., Geudens, G., Augusto, L., Staelens, J., Mertens, J., Wuyts, K., et al. (2007). The effect of forest type on throughfall deposition and seepage flux: A review. Oecologia, 153(3), 663–674.

    Article  Google Scholar 

  • Draaijers, G. P. J., Van Ek, R., & Meijers, R. (1992). Research on the impact of forest stand structure on atmospheric deposition. Environmental Pollution, 75(2), 243–249.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C. S., Eagar, C., et al. (2001). Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies. BioScience, 51(3), 180–198.

    Article  Google Scholar 

  • Dubayah, R. O., & Drake, J. B. (2000). Lidar remote sensing for forestry. Journal of Forestry, 98(6), 44–46.

    Google Scholar 

  • Edson, C., & Wing, M. G. (2012). Tree location measurement accuracy with a mapping-grade GPS receiver under forest canopy. Forest Science, 58(6), 567–576.

    Article  Google Scholar 

  • Emmett, B. A., Boxman, D., Bredemeier, M., Gundersen, P., Janne Kjønaas, O., Moldan, F., et al. (1998). Predicting the effects of atmospheric nitrogen deposition in conifer stands: Evidence from the NITREX ecosystem-scale experiments. Ecosystems, 1(4), 352–360.

    Article  CAS  Google Scholar 

  • Erisman, J. W., & Draaijers, G. (2003). Deposition to forests in Europe: Most important factors influencing dry deposition and models used for generalisation. Environmental Pollution, 124(3), 379–388.

    Article  CAS  Google Scholar 

  • Ewing, H. A., Weathers, K. C., Templer, P. H., Dawson, T. E., Firestone, M. K., Elliott, A. M., et al. (2009). Fog water and ecosystem function: Heterogeneity in a California redwood forest. Ecosystems, 12(3), 417–433.

    Article  CAS  Google Scholar 

  • Falkowski, M. J., Hudak, A. T., Crookston, N. L., Gessler, P. E., Uebler, E. H., & Smith, A. M. (2010). Landscape-scale parameterization of a tree-level forest growth model: A k-nearest neighbor imputation approach incorporating LiDAR data. Canadian Journal of Forest Research, 40(2), 184–199.

    Article  Google Scholar 

  • Fenn, M. E., Poth, M. A., Aber, J. D., Baron, J. S., Bormann, B. T., Johnson, D. W., et al. (1998). Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies. Ecological Applications, 8(3), 706–733.

    Article  Google Scholar 

  • Fenn, M. E., Haeuber, R., Tonnesen, G. S., Baron, J. S., Grossman-Clarke, S., Hope, D., et al. (2003). Nitrogen emissions, deposition, and monitoring in the western United States. BioScience, 53(4), 391–403.

    Article  Google Scholar 

  • Fenn, M., Allen, E., Weiss, S., Jovan, S., Geiser, L., Tonnesen, G., et al. (2010). Nitrogen critical loads and management alternatives for N-impacted ecosystems in California. Journal of Environmental Management, 91(12), 2404–2423.

    Article  CAS  Google Scholar 

  • Fowler, D., Cape, J. N., Unsworth, M. H., Mayer, H., Crowther, J. M., Jarvis, P. G., Gardiner, B., & Shuttleworth, W. J. (1989). Deposition of atmospheric pollutants on forests [and discussion]. Philosophical Transactions of the Royal Society of London B, 324(1223), 247–265.

    Article  Google Scholar 

  • Frank, J., & Wing, M. G. (2014). Balancing horizontal accuracy and data collection efficiency with mapping-grade GPS receivers. Forestry, 87(3), 389–397.

    Article  Google Scholar 

  • Hofhansl, F., Wanek, W., Drage, S., Huber, W., Weissenhofer, A., & Richter, A. (2011). Topography strongly affects atmospheric deposition and canopy exchange processes in different types of wet lowland rainforest, Southwest Costa Rica. Biogeochemistry, 106(3), 371–396.

    Article  Google Scholar 

  • Hudak, A. T., Crookston, N. L., Evans, J. S., Hall, D. E., & Falkowski, M. J. (2008). Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sensing of Environment, 112(5), 2232–2245.

    Article  Google Scholar 

  • Hyde, P., Dubayah, R., Peterson, B., Blair, J., Hofton, M., Hunsaker, C., et al. (2005). Mapping forest structure for wildlife habitat analysis using waveform lidar: Validation of montane ecosystems. Remote Sensing of Environment, 96(3), 427–437.

    Article  Google Scholar 

  • Johnson, D. W., & Lindberg, S. E. (1992). Atmospheric deposition and forest nutrient cycling. A synthesis of the Integrated Forest Study. New York, NY: Springer-Verlag.

  • Kane, V. R., Bakker, J. D., McGaughey, R. J., Lutz, J. A., Gersonde, R. F., & Franklin, J. F. (2010). Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data. Canadian Journal of Forest Research, 40(4), 774–787.

    Article  Google Scholar 

  • Kirchner, M., Fegg, W., Römmelt, H., Leuchner, M., Ries, L., Zimmermann, R., et al. (2014). Nitrogen deposition along differently exposed slopes in the Bavarian Alps. Science of the Total Environment, 470, 895–906.

    Article  Google Scholar 

  • Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. (2002). Lidar remote sensing for ecosystem studies. BioScience, 52(1), 19–30.

    Article  Google Scholar 

  • Likens, G. E., Bormann, F. H., & Johnson, N. M. (1981). Interactions between major biogeochemical cycles in terrestrial ecosystems. In G. E. Likens (Ed.), Some perspectives of the major biogeochemical cycles (pp. 93–112). New York: Wiley.

    Google Scholar 

  • Likens, G. E., Driscoll, C. T., & Buso, D. C. (1996). Long-term effects of acid rain: Response and recovery of a forest ecosystem. Science, 272(5259), 244–245.

    Article  CAS  Google Scholar 

  • Lim, K., Treitz, P., Wulder, M., St-Onge, B., & Flood, M. (2003). LiDAR remote sensing of forest structure. Progress in Physical Geography, 27(1), 88–106.

    Article  Google Scholar 

  • Lindberg, S. E., & Garten, C. (1988). Sources of sulphur in forest canopy throughfall. Nature, 336(6195), 148–151.

    Article  CAS  Google Scholar 

  • Lindberg, S., & Owens, J. (1992). Throughfall studies of deposition to forest edges and gaps in montane ecosystems. Biogeochemistry, 19(3), 173–194.

    Google Scholar 

  • Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., et al. (2013). Enhanced nitrogen deposition over China. Nature, 494(7438), 459–462.

    Article  CAS  Google Scholar 

  • Lovett, G. M. (1994). Atmospheric deposition of nutrients and pollutants in North America: An ecological perspective. Ecological Applications, 4(4), 630–650.

    Article  Google Scholar 

  • Lovett, G. M., & Kinsman, J. D. (1990). Atmospheric pollutant deposition to high-elevation ecosystems. Atmospheric Environment, 24A(11), 2767–2786.

    Article  CAS  Google Scholar 

  • Lovett, G. M., & Reiners, W. A. (1986). Canopy structure and cloud water deposition in subalpine coniferous forests. Tellus, 38B, 319–26.

    Article  CAS  Google Scholar 

  • Lovett, G. M., Thompson, A. W., Anderson, J. B., & Bowser, J. J. (1999). Elevational patterns of sulfur deposition at a site in the Catskill Mountains, New York. Atmospheric Environment, 33(4), 617–624.

    Article  CAS  Google Scholar 

  • Makowski Giannoni, S., Rollenbeck, R., Fabian, P., & Bendix, J. (2013). Complex topography influences atmospheric nitrate deposition in a neotropical mountain rainforest. Atmospheric Environment, 79, 385–394.

    Article  CAS  Google Scholar 

  • Maurer, K. D., Hardiman, B. S., Vogel, C. S., & Bohrer, G. (2013). Canopy-structure effects on surface roughness parameters: Observations in a great lakes mixed-deciduous forest. Agricultural and Forest Meteorology, 177, 24–34.

    Article  Google Scholar 

  • Nanus, L., Clow, D. W., Saros, J. E., Stephens, V. C., & Campbell, D. H. (2012). Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA. Environmental Pollution, 166, 125–135.

    Article  CAS  Google Scholar 

  • National Atmospheric Deposition Program (NADP). NRSP-3, Illinois State Water Survey, Champaign, Illinois. http://nadp.sws.uiuc.edu

  • National Oceanic and Atmospheric Administration (NOAA). (2012). http://www.noaa.gov

  • Pardo, L. H., Fenn, M. E., Goodale, G. L., Geiser, L. H., Driscoll, C. T., Allen, E. B., et al. (2011). Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecological Applications, 21(8), 3049–3082.

    Article  Google Scholar 

  • Pflugmacher, D., Cohen, W. B., & Kennedy, R. E. (2012). Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sensing of Environment, 122, 146–165.

    Article  Google Scholar 

  • Ponette-González, A. G., Weathers, K. C., & Curran, L. M. (2010a). Tropical land-cover change alters biogeochemical inputs to ecosystems in a Mexican montane landscape. Ecological Applications, 20(7), 1820–1837.

    Article  Google Scholar 

  • Ponette-González, A. G., Weathers, K. C., & Curran, L. M. (2010b). Water inputs across a tropical montane landscape in Veracruz, Mexico: Synergistic effects of land cover, rain and fog seasonality, and interannual precipitation variability. Global Change Biology, 16(3), 946–963.

    Article  Google Scholar 

  • Porter, E., Blett, T., Potter, D. U., & Huber, C. (2005). Protecting resources on federal lands: Implications of critical loads for atmospheric deposition of nitrogen and sulfur. BioScience, 55(7), 603–612.

    Article  Google Scholar 

  • Roth, B. E., Slatton, K. C., & Cohen, M. J. (2007). On the potential for high-resolution lidar to improve rainfall interception estimates in forest ecosystems. Frontiers in Ecology and the Environment, 5(8), 421–428.

    Article  Google Scholar 

  • Schlesinger, W. H., & Bernhardt, E. S. (2013). Biogeochemistry: An analysis of global change. Massachusetts: Academic.

    Book  Google Scholar 

  • Simkin, S. M., Lewis, D. N., Weathers, K. C., Lovett, G. M., & Schwarz, K. (2004). Determination of sulfate, nitrate, and chloride in throughfall using ion-exchange resins. Water, Air, and Soil Pollution, 153(1-4), 343–354.

    Article  CAS  Google Scholar 

  • Stankwitz, C., Kaste, J. M., & Friedland, A. J. (2012). Threshold increases in soil lead and mercury from tropospheric deposition across an elevational gradient. Environmental Science & Technology, 46(15), 8061–8068.

    Article  CAS  Google Scholar 

  • Tang, H., Brolly, M., Zhao, F., Strahler, A. H., Schaaf, C. L., Ganguly, S., et al. (2014). Deriving and validating leaf area index (LAI) at multiple spatial scales through lidar remote sensing: A case study in sierra national forest, CA. Remote Sensing of Environment, 143, 131–141.

    Article  Google Scholar 

  • Weathers, K. C., & Lovett, G. M. (1998). Acid deposition research and ecosystem science: Synergistic successes. In Successes, limitations, and frontiers in ecosystem science (pp. 195–219). New York: Springer.

    Chapter  Google Scholar 

  • Weathers, K. C., & Ponette-González, A. G. (2011). Atmospheric deposition. In D. Levia, D. Carlyle-Moses, & T. Tanaka (Eds.), Forest hydrology and biogeochemistry: Synthesis of past research and future directions (pp. 357–370). New York: Springer.

    Chapter  Google Scholar 

  • Weathers, K. C., Lovett, G. M., & Likens, G. E. (1995). Cloud deposition to a spruce forest edge. Atmospheric Environment, 29(6), 665–672.

    Article  CAS  Google Scholar 

  • Weathers, K. C., Lovett, G. M., Likens, G., & Lathrop, R. (2000). The effect of landscape features on deposition to Hunter Mountain, Catskill Mountains, New York. Ecological Applications, 10(2), 528–540.

    Article  Google Scholar 

  • Weathers, K. C., Cadenasso, M. L., & Pickett, S. T. (2001). Forest edges as nutrient and pollutant concentrators: Potential synergisms between fragmentation, forest canopies, and the atmosphere. Conservation Biology, 15(6), 1506–1514.

    Article  Google Scholar 

  • Weathers, K. C., Simkin, S. M., Lovett, G. M., & Lindberg, S. E. (2006). Empirical modeling of atmospheric deposition in mountainous landscapes. Ecological Applications, 16(4), 1590–1607.

    Article  Google Scholar 

  • Zimmermann, F., Lux, H., Maenhaut, W., Matschullat, J., Plessow, K., Reuter, F., & Wienhaus, O. (2003). A review of air pollution and atmospheric deposition dynamics in southern Saxony, Germany, Central Europe. Atmospheric Environment, 37(5), 671–691.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Edgar Orre, Angela Bernheisel, and the California Department of Forestry and Fire Protection staff for their generous logistical support and assistance; Alicia Gray, Clyde Elliott, and Amanda Gleason for assistance with field measurements; Bethel Steele and Amanda Lindsey for support in the field and laboratory; and Cary Institute of Ecosystem Studies Analytical Laboratory for chemical analyses. We are also grateful to Pinliang Dong and Barney Venables as well as two anonymous reviewers for their insightful suggestions on earlier drafts of this manuscript. NASA’s Land Cover/Land-Use Change Program provided financial support to L.M. Curran and A.G. Ponette-González for this project (#NNX11AF08G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Ponette-González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griffith, K.T., Ponette-González, A.G., Curran, L.M. et al. Assessing the influence of topography and canopy structure on Douglas fir throughfall with LiDAR and empirical data in the Santa Cruz mountains, USA. Environ Monit Assess 187, 270 (2015). https://doi.org/10.1007/s10661-015-4486-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4486-6

Keywords

Navigation