Skip to main content

Advertisement

Log in

Using LiDAR technology in forestry activities

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Managing natural resources in wide-scale areas can be highly time and resource consuming task which requires significant amount of data collection in the field and reduction of the data in the office to provide the necessary information. High performance LiDAR remote sensing technology has recently become an effective tool for use in applications of natural resources. In the field of forestry, the LiDAR measurements of the forested areas can provide high-quality data on three-dimensional characterizations of forest structures. Besides, LiDAR data can be used to provide very high quality and accurate Digital Elevation Model (DEM) for the forested areas. This study presents the progress and opportunities of using LiDAR remote sensing technology in various forestry applications. The results indicate that LiDAR based forest structure data and high-resolution DEMs can be used in wide-scale forestry activities such as stand characterizations, forest inventory and management, fire behaviour modeling, and forest operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akay, A. E. (2004). A new methodology in designing forest roads. The Turkish Journal of Agriculture and Forestry, 28, 273–279.

    Google Scholar 

  • Akay, A. E. & Sessions, J. (2005). Applying the Decision Support System, TRACER, to Forest Road Design. Western Journal of Applied Forestry, 20(3), 184–191.

    Google Scholar 

  • Akay, A. E., Karas, I. R., Sessions, J., Yuksel, A., Bozali, N., & Gundogan, R. (2004). Using high-resolution digital elevation model for computer-aided forest road design, The Proceedings for XXth International Society for Photogrammetry and Remote Sensing (ISPRS) Congress, Istanbul, Turkey, July.

  • Andersen, H. A. (1999). The use of airborne laser scanner data (LiDAR) for forest measurement applications. Seattle: Precision Forestry Cooperative, College of Forest Resources, University of Washington, 32p.

    Google Scholar 

  • Aruga, K., Sessions, J., Akay, A. E. (2005). Application of an airborne laser scanner to forest road design with accurate earthwork volumes. The Japanese Forest Society. Journal of Forest Research, 10(2), 113–123.

    Article  Google Scholar 

  • Brandtberg, T., Warner, T. A., Landenberger, R. E., & McGraw, J. B. (2002). Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sensing of Environment, 85, 290–303.

    Article  Google Scholar 

  • Chung, W. (2003). Optimization of Cable Logging Layout Using a Heuristic Algorithm for Network Programming. Ph.D. Thesis. Oregon State University, College of Forestry, Department of Forest Engineering, Corvallis, Oregon, 198 p.

  • Fernandes, A. M., Utkin, A. B., Lavrov, A. V., & Vilar, R. M. (2005). Design of committee machines for classification of single-wavelength lidar signals applied to early forest fire detection. Pattern Recognition Letters, 26, 625–632.

    Article  Google Scholar 

  • Hofton, M. A., Rocchio, L. E., Blair, J. B., & Dubayah, R. (2002). Validation of vegetation canopy lidar sub-canopy topography measurements for a dense tropical forest. Journal of Geodynamics, 34, 491–502.

    Article  Google Scholar 

  • Hyde, P., Dubayah, R., Peterson, B., Blair, J. B., Hofton, M., Hunsaker, C., et al. (2005). Mapping forest structure for wildlife habitat analysis using waveform lidar: Validation of montane ecosystems. Remote Sensing of Environment, 96, 427–437.

    Article  Google Scholar 

  • Maltamo, M., Eerikainen, K., Pitkanen, J., Hyyppa, J., & Vehmas, M. (2004). Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sensing of Environment, 90, 319–330.

    Article  Google Scholar 

  • Means, J. E., Acker, S. A., Harding, D. J., Blair, J. B., Lefsky, M. A., Cohen, W. B., et al. (1999). Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon. Remote Sensing of Environment, 67, 298–308.

    Article  Google Scholar 

  • Morsdorf, F., Meier, E., Kotz, B., Itten, K. I., Dobbertin, M., & Allgower, B. (2004). LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sensing of Environment, 92, 353–362.

    Article  Google Scholar 

  • Patenaude, G., Hill, R. A., Milne, R., Gaveau, D. L. A., Briggs, B. B. J., & Dawson, T. P. (2004). Quantifying forest above ground carbon content using LiDAR remote sensing. Remote Sensing of Environment, 93, 368–380.

    Article  Google Scholar 

  • Reutebuch, S. E., Andersen, H., & McGaughey, R. J. (2005). Light Detection and Ranging (LIDAR): An emerging tool for multiple resource inventory. Journal of Forestry, 103(6), 286–292.

    Google Scholar 

  • Reutebuch, S. E., McGauhey, R. J., Andersen, H. E., & Carson, W. W. (2003). Accuracy of high-resolution LIDAR terrain model under a conifer forest canopy. Canadian J. of Remote Sensing, 29, 527–535.

    Google Scholar 

  • Riano, D., Meier, E., Allgower, B., Chuvieco, E., & Ustin, S. L. (2003). Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behaviour modeling. Remote Sensing of Environment, 86, 177–186.

    Article  Google Scholar 

  • Roberts, S. D., Dean, T. J., Evans, D. L., McCombs, J. W., Harrington, R. L., & Glass, P. A. (2005). Estimating individual tree leaf area in loblolly pine plantations using LiDAR-derived measurements of height and crown dimensions. Forest Ecology and Management, 213, 54–70.

    Article  Google Scholar 

  • Sessions, J. & Chung, W. (2003). An approach to optimizing helicopter logging operations. (pp. 81–86). In proceedings of the 2000 Systems Analysis Symposium in Forest Resources, Aspen, Colorado, Sept 28–30. Volume 7, Managing Forest Ecosystems, Kluwer Press.

  • Takahashi, T., Yamamoto, K., Senda, Y., & Tsuzuku, M. (2005a). Estimating individual tree heights of sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR. Journal of Forest Research, 10, 135–142.

    Article  Google Scholar 

  • Takahashi, T., Yamamoto, K., Senda, Y., & Tsuzuku, M. (2005b). Predicting individual stem volumes of sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR. Journal of Forest Research, 10, 305–312.

    Article  Google Scholar 

  • Zimble, D. A., Evans, D. L., Carlson, G. C., Parker, R. C., Grado, S. C., & Gerard, P. D. (2003). Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sensing of Environment, 87, 171–182.

    Article  Google Scholar 

  • Zutter, B. R., Oderwald, R. G., Murphy, P. A., & Farrar Jr., R. M. (1986). Characterizing diameter distributions with modified data types and forms of the Weibull distribution. Forest Science, 32, 37–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Emin Akay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akay, A.E., Oğuz, H., Karas, I.R. et al. Using LiDAR technology in forestry activities. Environ Monit Assess 151, 117–125 (2009). https://doi.org/10.1007/s10661-008-0254-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0254-1

Keywords

Navigation