Skip to main content

Advertisement

Log in

Potentially toxic elements in lignite and its combustion residues from a power plant

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The presence of potentially toxic elements in lignite and coal is a matter of global concern during energy extraction from them. Accordingly, Barsingsar lignite from Rajasthan (India), a newly identified and currently exploited commercial source of energy, was evaluated for the presence of these elements and their fate during its combustion. Mobility of these elements in Barsingsar lignite and its ashes from a power plant (Bikaner-Nagaur region of Thar Desert, India) is presented in this paper. Kaolinite, quartz, and gypsum are the main minerals in lignite. Both the fly ash and bottom ash of lignite belong to class-F with SiO2 > Al2O3 > CaO > MgO. Both the ashes contain quartz, mullite, anhydrite, and albite. As, In, and Sr have higher concentration in the feed than the ashes. Compared to the feed lignite, Ba, Co, U, Cu, Cd, and Ni are enriched (10–5 times) in fly ash and Co, Pb, Li, Ga, Cd, and U in bottom ash (9–5 times). Earth crust–normalization pattern showed enrichment of Ga, U, B, Ag, Cd, and Se in the lignite; Li, Ba, Ga, B, Cu, Ag, Cd, Hg, Pb, and Se, in fly ash; and Li, Sr, Ga, U, B, Cu, Ag, Cd, Pb, and Se in bottom ash. Hg, Ag, Zn, Ni, Ba, and Se are possibly associated with pyrite. Leaching test by toxicity characteristic leaching procedure (TCLP) showed that except B all the elements are within the safe limits prescribed by Indian Standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ASTM C618 -12a (2012). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete.

  • ASTM D6357 (2000). Standard test method for determination of trace elements in coal, coke and combustion residues from coal utilization processes by inductively coupled plasma atomic emission spectrometry, inductively coupled plasma mass spectrometry and graphite furnace atomic absorption spectrometry.

  • ASTM D6722 (2001). Standard test method for total mercury in coal and coal combustion residues by direct combustion analysis.

  • Athanasios, G., & Triantafyllou. (2003). Levels and trend of suspended particles around large lignite power stations. Environmental Monitoring and Assessment, 89, 15–34.

    Article  Google Scholar 

  • Bakisgan, C., Dumanli, A. G., & Yurum, Y. (2009). Trace elements in Turkish biomass fuels, ashes of wheat straw, olive badasse and hazelnut shell. Fuel, 88, 842–1851.

    Article  Google Scholar 

  • Balan, H. O., & Gumrah, F. (2009). Assessment of shrinkage-swelling influences in coal seams using rank-dependent physical coal properties. International Journal of Coal Geology, 77, 203–213.

    Article  CAS  Google Scholar 

  • Blissett, R. S., & Rowson, N. A. (2012). A review on the multi-component utilization of coal fly ash. Fuel, 97, 1–23.

    Article  CAS  Google Scholar 

  • Cao, Y., Cheng, C., Chen, C., Liu, M., Wang, C., & Pan, W. (2008). Abatement of mercury emissions in the coal combustion process equipped with a Fabric Filter Baghouse. Fuel, 87, 3322–3330.

    Article  CAS  Google Scholar 

  • Cenni, R., Frandsen, F., Gerhardt, T., Spliethoff, H., & Hein, K. R. G. (1998). Study on trace metal partitioning in pulverized combustion of bituminous coal and dry sewage sludge. Waste Management, 18, 433–444.

    Article  CAS  Google Scholar 

  • Clarke, L. B. (1993). The fate of trace elements during coal combustion and gasification an overview. Fuel, 2, 731–733.

    Article  Google Scholar 

  • Clarke, L. B., & Sloss, L. L. (1992). Trace elements—emissions from coal combustion and gasification (p. 111). London: International Energy Agency Coal Research Report (IEACR/49).

    Google Scholar 

  • Cvetković, Z., Logar, M., & Rosić, A. (2013). Mineralogy and characterization of deposited particles of the aero sediments collected in the vicinity of power plants and the open pit coal mine: Kolubara (Serbia). Environmental Science and Pollution Research, 20, 3034–3049.

    Article  Google Scholar 

  • Diaz-Somoano, M., & Martinez-Tarazona, M. R. (2003). Trace element evaporation during coal gasification based on thermodynamic equilibrium calculation approach. Fuel, 82, 137–145.

    Article  CAS  Google Scholar 

  • Dudas, M. J. (1981). Long-term leachability of selected elements from fly ash. Environmental Science and Technology, 15, 840–843.

    Article  CAS  Google Scholar 

  • CEA (Central Electricity Authority) (2011). Report on fly ash generation at coal/lignite based thermal power stations and its utilization in the country for the year 2010–11, New Delhi.

  • Finkelman, R. B., Orem, W., Castranova, V., Tatu, C. A., Belkin, H. E., Zheng, B., Lerch, H. E., Maharaj, S. V., & Bates, A. L. (2002). Health impacts of coal and coal use possible solutions. International Journal of Coal Geology, 50, 425–443.

    Article  CAS  Google Scholar 

  • Fotopoulou, M., Siavalas, G., İnaner, H., Katsanou, K., Lambrakis, N., Christanis, K., (2010). Combustion and leaching behavior of trace elements in lignite and combustion by-products from the Muğla Basin SW Turkey. 12th International Congress of the Geological Society of Greece Planet Earth Geological Processes and Sustainable Development XLIII: No 5, 2217–2228.

  • Gao, Y., Kulaots, I., Chen, X., Suuberg, E. M., Hurt, R. H., & Veranth, J. M. (2002). The effect of solid fuel type and combustion conditions on residual carbon properties and fly ash quality. Proceedings of the Combustion Institute, 29, 475–483.

    Article  CAS  Google Scholar 

  • Goodarzi, F., Huggins, F. E., & Sanei, H. (2008). Assessment of elements speciation of As, Cr, Ni and emitted Hg for a Canadian power plant burning bituminous coal. International Journal of Coal Geology, 74, 1–12.

    Article  CAS  Google Scholar 

  • Govindaraju, M., Ganeshkumar, R. S., Muthukumaran, V. R., & Visvanathan, P. (2012). Identification and evaluation of air-pollution-tolerant plants around lignite-based thermal power station for greenbelt development. Environmental Science and Pollution Research, 19, 1210–1223.

    Article  CAS  Google Scholar 

  • Hatt, R., (1995). Correlating the slagging of a utility boiler with coal characteristics. Eng. Found Conf. on Application of Advanced Technology to Ash-Related Problems in Boilers. Waterville Valley NH July 16–21.

  • Henry, J., Towler, M. R., Stanton, K. T., Querol, X., & Moreno, N. (2004). Characterization of the glass fraction of a selection of European coal fly ashes. Journal of Chemical Technology and Biotechnology, 79, 540–546.

    Article  CAS  Google Scholar 

  • Hower, J. C., O’Keefe, J. M. K., Watt, M. A., Pratt, T. J., Eble, C. F., Stucker, J. D., Richardson, A. R., & Kostova, I. J. (2009). Notes on the origin of inertinite macerals in coals: observations on the importance of fungi in the origin of macrinite. International Journal of Coal Geology, 80, 135–143.

    Article  CAS  Google Scholar 

  • IS 1350 (1984). Methods of tests for coal and coke determination of calorific value sulphur, carbon–hydrogen, and nitrogen (Reaffirmed 2005).

  • IS 1355 (1984). Methods of determination of chemical composition of ash of coal coke (Reaffirmed 2007).

  • IS (1974). Indian Standards for Industrial Effluents. IS 2490.

  • IS 9127 (1986). Methods of the petrographic analysis of coal.

  • ISO 7404 (1988). Methods for the petrographic analysis of bituminous coal and anthracite.

  • Izquierdo, M., & Querol, X. (2012). Leaching behaviour of elements from coal combustion fly ash an overview. International Journal of Coal Geology, 94, 54–66.

    Article  CAS  Google Scholar 

  • Killingley, J., McEvoy, S., Dokumeu, C., Stanber, J., Dale, L., (2000). Trace element leaching from fly ash from Australian power stations. End of grant report Australian coal association research program project C8051 CSIRO division of energy technology pp 98.

  • Kim, A. G., & Kazonich, G. (2004). The silicate/non-silicate distribution of metals in fly ash and its effect on solubility. Fuel, 83, 2285–2292.

    Article  CAS  Google Scholar 

  • Koukouzas, N., Ward, C. R., Papanikolaou, D., Li, Z., & Ketikidis, C. (2009). Quantitative evaluation of minerals in fly ashes of biomass coal and biomass-coal mixture derived from circulating fluidised bed combustion technology. Journal of Hazardous Materials, 169, 100–107.

    Article  CAS  Google Scholar 

  • Lawrence, A., Ilayaperumal, V., Dhandapani, K. P., Srinivasan, S. V., Muthukrishnan, M., & Sundararajan, S. (2013). A novel technique for characterizing sintering propensity of low rank fuels for CFBC boilers. Fuel, 109, 211–216.

    Article  CAS  Google Scholar 

  • Liu, G., Yang, P., Peng, Z., & Chou, C. (2004). Petrographic and geochemical contrasts and environmentally significant trace elements in marine-influenced coal seams Yanzhou mining area China. Journal of Asian Earth Sciences, 23, 491–506.

    Article  Google Scholar 

  • Matjie, R. H., Ward, C. R., Li, Z., & French, D. (2008). Chemical and crystalline phases in coarse gasification ash. Fuel, 87, 857–869.

    Article  CAS  Google Scholar 

  • Matjie, R. H., Ward, C. R., & Li, Z. (2012a). Mineralogical transformations in coal feed stocks during carbon conversing based on packed-bed combustion tests Part-I Bulk coal and ash studies. Coal Combustion and Gasification Products, 4, 45–54.

    Article  Google Scholar 

  • Matjie, R. H., Ward, C. R., & Li, Z. (2012b). Mineralogical transformations in coal feed stocks during carbon conversing based on packed-bed combustion tests Part-II behaviour of individual particles. Coal Combustion and Gasification Products, 4, 55–67.

    Article  Google Scholar 

  • Medina, A., Gamero, P., Querol, X., Moreno, N., De León, B., Almanza, M., Vargas, G., Izquierdo, M., & Font, O. (2010). Fly ash from a Mexican mineral coal I: mineralogical and chemical characterization. Journal of Hazardous Materials, 181, 82–90.

    Article  CAS  Google Scholar 

  • Meij, R. (1995). The distribution of trace elements during the combustion of coal. In D. J. Swaine & F. Goodarzi (Eds.), Environmental aspects of trace elements in coal (Vol. 7, pp. 111–145). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Miller, SF., Wincek, RT., Miller, BG., Scaroni, AW., (1998). Effect of fuel form on trace element emissions in an industrial-scale boiler. Fifteenth International Pittsburgh Coal Conference Pittsburgh Pennsylvania September 14–18.

  • Neville, M., & Sarofim, A. F. (1985). The fate of sodium during pulverized coal combustion. Fuel, 64, 384–390.

    Article  CAS  Google Scholar 

  • Pandey, V. C., Singh, J. S., Singh, R. P., Singh, N., & Yunus, M. (2011). Arsenic hazards in coal fly ash and its fate in Indian scenario. Resources, Conservation and Recycling, 55, 819–835.

    Article  Google Scholar 

  • Petrov, I., Yude, F., Bershov, L. V., Hafner, S. S., & Kroil, H. (1989). Order-disorder of Fe3+ ions over the tetrahedral positions in albite. American Mineralogist, 74, 604–609.

    CAS  Google Scholar 

  • Pipatmanomai, S., Fungtammasan, B., & Bhattacharya, S. (2009). Characteristics and composition of lignites and boiler ashes and their relation to slagging the case of Mae Moh PCC boilers. Fuel, 88, 116–123.

    Article  CAS  Google Scholar 

  • Rallo, M., Lopez-Anton, M. A., Contreras, M. L., & Maroto-Valer, M. M. (2012). Mercury policy and regulations for coal-fired power plants. Environmental Science and Pollution Research, 19, 1084–1096.

    Article  CAS  Google Scholar 

  • Ram, LC., (1992). Moessbauer spectroscopic and gamma radiolytic studies of some Indian coals. PhD thesis Banaras Hindu University Varanasi India.

  • Ram, L. C., & Masto, R. E. (2014). Fly ash for soil amelioration: a review on the influence of ash blending with inorganic and organic amendments. Earth-Science Reviews, 128, 52–74.

    Article  CAS  Google Scholar 

  • Ram, L. C., Tripathi, P. S. M., & Mishra, S. P. (1995). Moessbauer spectroscopic studies on the transformations of Fe-bearing minerals during combustion of coal correlation with fouling and slagging. Fuel Processing Technology, 42, 47–60.

    Article  CAS  Google Scholar 

  • Ram, L. C., Srivastava, N. K., Tripathi, R. C., Thakur, S. K., Sinha, A. K., Jha, S. K., Masto, R. E., & Mitra, S. (2007). Leaching behavior of lignite fly ash with shake and column tests. Environmental Geology, 51, 1119–1132.

    Article  CAS  Google Scholar 

  • Shah, P., Strezov, V., Prince, K., & Nelson, P. F. (2008). Speciation of As, Cr, Se and Hg under coal fired power station conditions. Fuel, 87, 1859–1869.

    Article  CAS  Google Scholar 

  • Singh, A. (2002). Rank assessment of Panandhro lignite deposit, Kutch Basin Gujarat. Journal of the Geological Society of India, 59, 66–77.

    Google Scholar 

  • Singh, A., & Singh, B. D. (1994). Rank evaluation of the Neyveli lignite deposits on the basis of reflectance parameter. Journal of the Geological Society of India, 44, 391–397.

    Google Scholar 

  • Singh, A., Misra, B. K., Singh, B. D., & Navale, G. K. B. (1992). The Neyveli lignite deposits (Cauvery basin) India organic composition age and depositional pattern. International Journal of Coal Geology, 21, 45–97.

    Article  CAS  Google Scholar 

  • Singh, S., Ram, L. C., Masto, R. E., & Verma, S. K. (2011). A comparative evaluation of minerals and trace elements in the ashes from lignite coal refuse and biomass fired power plants. International Journal of Coal Geology, 87, 112–120.

    Article  CAS  Google Scholar 

  • Singh, S., Ram, L. C., & Sarkar, A. (2013). The mineralogical characteristics of the ashes derived from the combustion of lignite, coal washery rejects, and mustard stalk. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35, 2072–2085.

    Article  CAS  Google Scholar 

  • Stach, E., Mackowsky, M.-T., Teichmu¨ ller, M., Taylor, G. H., Chandra, D., & Teichmu¨ ller, R. (1982). Stach’s textbook of coal petrology (p. 535). Stuttgart: Gebru¨derBorntraeger.

    Google Scholar 

  • Swaine, DJ., (1995). The formation composition and utilisation of fly ash. In Swaine DJ, Goodarzi F (Eds) Environmental Aspects of Trace Elements in Coal. Springer.

  • Tandon, H. L. (1995). Methods of analysis of soils plants, waters, and fertilizers. New Delhi: Fertilizer Development and Consultation Organization.

    Google Scholar 

  • Tang, L., Gupta, R., Sheng, C., & Wall, T. (2005). The char structure characterization from the coal reflectogram. Fuel, 84, 1268–1276.

    Article  CAS  Google Scholar 

  • Toprak, S. (2009). Petrographic properties of major coal seams in Turkey and their formation. International Journal of Coal Geology, 78, 263–275.

    Article  CAS  Google Scholar 

  • Vassilev, S. V., & Vassileva, C. G. (1996). Mineralogy of combustion wastes from coal-fired power stations. Fuel Processing Technology, 47, 261–280.

    Article  CAS  Google Scholar 

  • Vassilev, S. V., & Vassileva, C. G. (1997). Geochemistry of coals coal ashes and combustion wastes from coal-fired power stations. Fuel Processing Technology, 51, 19–45.

    Article  CAS  Google Scholar 

  • Vassilev, S. V., Eskenazy, G. M., & Vassileva, C. G. (2001). Behaviour of elements and minerals during preparation and combustion of the Pernik coal Bulgaria. Fuel Processing Technology, 72, 103–129.

    Article  CAS  Google Scholar 

  • Vassilev, S. V., Vassileva, C. G., Baxter, D., & Andersen, L. (2009). A new approach for the combined chemical and mineral classification of the inorganic matter in coal. 2. Potential applications of the classification systems. Fuel, 88, 246–254.

    Article  CAS  Google Scholar 

  • Vassilev, S. V., Vassileva, C. G., Baxter, D., & Andersen, L. K. (2010). Relationships between chemical and mineral composition of coal and their potential applications as genetic indicators. Part 2. Mineral classes, groups, and species. Geologica Balcanica, 39, 43–67.

    Google Scholar 

  • Vassileva, C. G., & Vassilev, S. (2006). Behaviour of inorganic matter during heating of Bulgarian coals 2 Sub bituminous and bituminous coals. Fuel Processing Technology, 87, 1095–1116.

    Article  CAS  Google Scholar 

  • Vejahati, F., Xu, Z., & Gupta, R. (2010). Trace elements in coal associations with coal and minerals and their behavior during coal utilization—a review. Fuel, 89, 904–911.

    Article  CAS  Google Scholar 

  • Wang, W., Qin, Y., Song, D., & Wang, K. (2008). Column leaching of coal and its combustion residues, Shizuishan, China. International Journal of Coal Geology, 75, 81–87.

    Article  CAS  Google Scholar 

  • Ward, CR., French, D., Jankowski, J., (2003). Comparative evaluation of leachability test methods and element mobility for selected Australian fly ash samples. Co-operative Research Centre for Coal in Sustainable Development Technical Note 22, pp 22. http://pandora.nla.gov.au/pan/64389/20080828-328/www.ccsd.biz/publications/694.html.

  • Warren, CJ., Dudas, MJ., (1988). Leaching behaviour of selected trace elements in chemically weathered alkaline fly ash. Sci Total Environ. 76,229-246. www.dmg-raj.org/docs/vol.%2020-3-4-b.doc Lignite in Rajasthan - Department of Mines & Geology.

  • Xu, M., Yan, R., Zheng, C., Qiao, Y., Han, J., & Sheng, C. (2003). Status of trace element emission in a coal combustion process: a review. Fuel Processing Technology, 85, 215–237.

    Article  Google Scholar 

  • Yan, R., Gauthier, D., & Flamant, G. (2001). Volatility and chemistry of trace elements in a coal combustor. Fuel, 80, 2217–2226.

    Article  CAS  Google Scholar 

  • Zevenhoven, R., Mukherjee, A. B., & Bhattacharya, P. (2007). Arsenic flows in the environment of the European Union a synoptic review. Trace Metals and other Contaminants in the Environment, 9, 527–547.

    Article  CAS  Google Scholar 

  • Zhang, J., Zhao, Y., Wei, C., Yao, B., & Zheng, C. (2010). Mineralogy and microstructure of ash deposits from the Zhuzhou coal-fired power plant in China. International Journal of Coal Geology, 81, 309–319.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director, CSIR, Central Institute of Mining and Fuel Research, for supporting this publication. The support of Mrs. N. Choudhury, Mr. P. Boral, and Dr. K. K. Mishra for analysis and of the authorities of Barsingsar Thermal Power Plant, Neyveli Lignite Corporation, India, for providing the samples is acknowledged. The financial support for this study through the CSIR Network Project (NWP-017, 11th Five Year Plan) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. C. Ram or R. E. Masto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ram, L.C., Masto, R.E., Srivastava, N.K. et al. Potentially toxic elements in lignite and its combustion residues from a power plant. Environ Monit Assess 187, 4148 (2015). https://doi.org/10.1007/s10661-014-4148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4148-0

Keywords

Navigation