Skip to main content

Advertisement

Log in

Investigation of Environmental-Concern Trace Elements in Coal and Their Combustion Residues from Thermal Power Plants in Eastern India

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The bituminous-to-sub-bituminous quality feed coals of thermal power plants contain several environmental-concern trace elements (As, Se, Ni, Cr, Zn, Pb, Cu, Cd, Co and Mn). During combustion, these elements are enriched or depleted in the major coal combustion residues (CCR, fly and bottom ash). The analyzed elements are classified into three different groups according to the estimated enrichment ratio and relative enrichment index. Class I contains the volatile elements As, Se, both of which are depleted in fly and bottom ash. Class II contains the semi-volatile elements Zn, Cu, Ni, Cr, Cd and Pb, which are more enriched in finer fly ash than coarse bottom ash. In contrast, the less volatile Class III elements Co and Mn are equally enriched in fly and bottom ash. The major CCR containing heavy load of these elements (about 1826 t/year) are gradually exposed to the different segments of environment such as air, water and soil. These elements may have a possibility to be bioavailable in the food chain, which may give harmful influence to the ecological receptors. As per risk assessment code, the analyzed elements As, Se, Cr and Ni have low-risk character, while rest of the elements Cd, Cu, Pb, Zn, Co and Mn are safe for the environment. Laboratory water leaching experiment of elements in fly ash and bottom ash shows that these combustion residues are non-hazardous and may be used in various sectors such as construction field, land filled materials, mine reclamation and also in agriculture field. An understanding of regular monitoring and skillful management for the disposal practice as well as environmentally safe utilization of combustion residues generated from thermal power plants is a crucial issue from public health viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Source: Central electricity authority, Govt. India

Similar content being viewed by others

References

  • Baba, A., & Kaya, A. (2004). Leaching characteristics of solid wastes from thermal power plants of western Turkey and composition of toxicity methodologies. Journal of Environmental Management, 73, 199–207.

    Article  Google Scholar 

  • Basu, M., Pande, M., Bhadoria, P. B. S., & Mahapatra, S. C. (2009). Potential fly ash utilisation in agriculture: A global review. Progress in Natural Science, 19, 1173–1186.

    Article  Google Scholar 

  • Bhangare, R. C., Ajmal, P. Y., Sahu, S. K., Pandit, G. G., & Puranik, V. D. (2011). Distribution of trace elements in coal and combustion residues from five thermal power Plants in India. International Journal of Coal Geology, 86, 349–356.

    Article  Google Scholar 

  • Bhattacharyya, S., Donahoe, R. J., & Patel, D. (2009). Experimental study of chemical treatment of coal fly ash to reduce the mobility of priority of trace elements. Fuel, 88, 1173–1183.

    Article  Google Scholar 

  • Central Authority of Electricity Report, Govt. of India, 2016–2017.

  • Eskanazy, G., Finkelman, R. B., & Chatterjee, S. (2010). Some considerations concerning the use of correlation coefficients and cluster analysis in interpreting coal geochemistry data. International Journal of Coal Geology, 83, 491–493.

    Article  Google Scholar 

  • European Council Decision 2003/33/EC. Official Journal of the European communities, 16, 27–49.

  • Finkelman, R. B. (2004). Potential health impacts of burning coal beds and waste banks. International Journal of Coal Geology, 59, 19–24.

    Article  Google Scholar 

  • Hower, J. C., Robertson, J. D., Thomas, G. A., Wong, A. S., Schram, W. H., Graham, U. M., et al. (1996). Characterisation of fly ash from Kentucky power plants. Fuel, 75, 403–411.

    Article  Google Scholar 

  • Hu, G., Liu, G., Wu, D., & Fu, B. (2018). Geochemical behaviour of hazardous volatile elements in coals with different geological origin during combustion. Fuel, 233, 361–367.

    Article  Google Scholar 

  • Huggins, F., & Goodarzi, F. (2009). Environmental assessment of elements and polyaromatic hydrocarbons emitted from a Canadian coal fired power plant. International Journal of Coal Geology, 77, 282–288.

    Article  Google Scholar 

  • Izquierdo, M., & Querol, X. (2012). Leaching behaviour of elements from coal combustion fly ash: An overview. International Journal of Coal Geology, 94, 54–66.

    Article  Google Scholar 

  • Jankowski, J., Ward, C. R., French, D., & Groves, S. (2006). Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic ecosystem. Fuel, 85, 243–256.

    Article  Google Scholar 

  • Karayigit, A. I., Gayer, R. A., Querol, X., & Onacak, T. (2000). Contents of major and trace elements in feed coals from Turkish coal-fired power plants. International Journal of Coal Geology, 44, 169–184.

    Article  Google Scholar 

  • Li, X., Dai, S., Zhang, W., Li, T., Zheng, X., & Chen, W. (2014). Determination of As and Se in coal and coal combustion products using closed vessel microwave digestion and collision/reaction cell technology (CCT) of inductively coupled plasma mass spectroscopy (ICP-MS). International Journal of Coal Geology, 124, 1–4.

    Article  Google Scholar 

  • Li, J., Zhuang, X., Querol, X., Font, O., Moreno, N., & Zhou, J. (2012). Environmental geochemistry of the feed coals and their combustion by-products from two coal-fired power plants in Xinjiang Province, Northwest China. Fuel, 95, 446–456.

    Article  Google Scholar 

  • Markich, S. J., & Jeffree, R. A. (1994). Absorption of divalent trace metals as analogue of calcium by Australian fresh water bivalves: an explanation of how water hardness reduces metal toxicity. Aquatic Toxicology, 29, 257–290.

    Article  Google Scholar 

  • Markwiese, J. T., Rogers, W. J., Carriker, N. E., Thal, D. I., Vitale, R. J., Gruzalski, J. G., et al. (2014). Natural attenuation of coal combustion waste in river sediments. Environmental Monitoring and Assessment, 186, 5235–5246.

    Article  Google Scholar 

  • Mukerjee, A. B., & Zevenhoven, R. (2006). Mercury in coal ash and its fate in the Indian subcontinent: A synoptic review. Science of the Total Environment, 368, 384–392.

    Article  Google Scholar 

  • Pandey, V. C., Singh, J. S., Singh, R. P., Singh, N., & Yunus, M. (2011). Arsenic hazards in coal fly ash and its fate in Indian scenario. Resource Conservation and Recycling, 55, 819–835.

    Article  Google Scholar 

  • Pendias, A. K. (2004). Soil-plant transfer of trace elements: An environmental issue. Geoderma, 122, 143–149.

    Article  Google Scholar 

  • Querol, X., Turel, J. L. F., & Soler, A. L. (1995). Trace elements in coal and their behaviour during combustion in a large power station. Fuel, 74, 331–343.

    Article  Google Scholar 

  • Rowe, C. L., Hopkins, W. A., & Congdon, J. D. (2002). Ecotoxicological implications of aquatic disposal of coal combustion residues in the United States: A review. Environmental Monitoring and Assessment, 80, 207–276.

    Article  Google Scholar 

  • Sanders, J. G., & Riedel, G. F. (1998). Metal accumulation and impacts in phytoplankton. In W. J. Langston & M. J. Bebianno (Eds.), Metal metabolism in aquatic environments. Dordrecht: Springer. ISBN 978-1-4419-4731-4.

    Google Scholar 

  • Saqib, N., & Backstrom, M. (2016). Chemical association and mobility of trace elements in 13 different fuel incineration fly ashes. Fuel, 165, 193–204.

    Article  Google Scholar 

  • Shim, Y. S., Rhee, S. W., & Lee, W. K. (2005). Comparison of leaching characteristics of heavy metals from bottom and fly ashes in Korea and Japan. Waste Management, 25, 473–480.

    Article  Google Scholar 

  • Spears, D. A., & Tarrazona, M. R. M. (2004). Trace elements in combustion residues from a UK power station. Fuel, 83, 2265–2270.

    Article  Google Scholar 

  • Sun, R., Liu, G., Zheng, L., & Chou, C. L. (2010). Geochemistry of trace elements in coals from the Zhuji Mine, Huainan coal field Anhui, China. International Journal of coal geology, 81, 81–96.

    Article  Google Scholar 

  • Sushil, S., & Batra, V. S. (2006). Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel, 85, 2676–2679.

    Article  Google Scholar 

  • Swaine, J. D. (2000). Why trace elements are important. Fuel Processing Technology, 65–66, 21–33.

    Article  Google Scholar 

  • Swaine, J. D., & Goodarzi, F. (1995). Environmental aspects of trace elements in coal., Energy and Environment Dordrecht: Spirnger. ISBN 9780792336662.

    Book  Google Scholar 

  • Tang, Q., Liu, G., Zhou, C., & Sun, R. (2012). Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fired power plants at Huainan, Anhui, China. Fuel, 95, 334–339.

    Article  Google Scholar 

  • Tang, Q., Liu, G., Zhou, C., & Sun, R. (2013). Distribution of trace elements in feed coal and combustion residues from two coal-fired power plants at Huainan, Anhui, China. Fuel, 107, 315–322.

    Article  Google Scholar 

  • Taylor, G. H., Teichmuller, M., Davis, A., Diessel, C. F. K., Littke, R., & Robert, P. (1998). Organic petrology: A new handbook incorporating some revised parts of Stach’s textbook of coal petrology. Stuttgart: Gebrüder Borntraeger. ISBN 978-3-443-01036-2.

    Google Scholar 

  • Tiwari, M. K., Bajpai, S., Dewangan, U. K., & Tamrakar, R. K. (2015). Suitability of leaching test methods for fly ash and slag: A review. Journal of Radiation Research and Applied Sciences, 8, 523–537.

    Article  Google Scholar 

  • Tiwari, M., Sahu, S. K., Bhangare, R. C., Ajmal, P. Y., & Pandit, G. G. (2014). Elemental characterisation of coal, fly ash, and bottom ash using energy dispersive X-ray fluorescence technique. Applied Radiation and Isotopes, 90, 53–57.

    Article  Google Scholar 

  • Vassilev, S. V., & Vassileva, C. G. (1996). Mineralogy of combustion wastes from coal-fired power stations. Fuel Processing Technology, 47, 261–280.

    Article  Google Scholar 

  • Vassilev, S. V., & Vassileva, C. G. (1997). Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations. Fuel Processing Technology, 51, 19–45.

    Article  Google Scholar 

  • Vejahati, F., Zhenghe, X., & Gupta, R. (2010). Trace elements in coal: Associations with coal minerals and their behavior during coal utilization—A review. Fuel, 89, 904–911.

    Article  Google Scholar 

  • Verma, S. K., Masto, R. E., Gautam, S., Choudhury, D. P., Ram, L. C., Maiti, S. K., et al. (2015). Investigation of PAHs and trace elements in coal and its combustion residues from a power plant. Fuel, 162, 138–147.

    Article  Google Scholar 

  • Xu, M., Yan, R., Zheng, C., Qiao, Y., Han, J., & Sheng, C. (2003). Status of trace element emission in coal combustion process: A review. Fuel Processing Technology, 85, 215–237.

    Article  Google Scholar 

  • Yan, R., Gauthier, D., & Flamant, G. (2001). Volatility and chemistry of trace elements in a coal combustor. Fuel, 80, 2217–2226.

    Article  Google Scholar 

  • Yan, C. Z., Li, Q. Z., Zhang, X., & Li, G. X. (2010). Mobility and ecological risk assessment of heavy metals in surface sediment of Xiamen Bay and its adjacent areas, China. Environmental Earth Science, 60, 1469–1479.

    Article  Google Scholar 

  • Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., et al. (2015). A comprehensive review on the application of coal fly ash. Earth-Science Reviews, 141, 105–121.

    Article  Google Scholar 

  • Zhang, J. Y., Zheng, C. G., Ren, D. Y., Chou, C. L., Liu, J., Zeng, R. S., et al. (2004). Distribution of potentially hazardous trace elements in coals from Shanxi province, China. Fuel, 83, 129–135.

    Article  Google Scholar 

  • Zhao, S., Duan, Y., Lu, J., Gupta, R., Pudasainee, D., Liu, S., et al. (2018a). Thermal stability, chemical speciation and leaching characteristics of hazardous trace elements in FGD gypsum from coal-fired power plants. Fuel, 231, 94–100.

    Article  Google Scholar 

  • Zhao, S., Duan, Y., Lu, J., Gupta, R., Pudasainee, D., Liu, S., et al. (2018b). Chemical speciation and leaching characteristics of hazardous trace elements in coal and fly ash from coal fired power plants. Fuel, 232, 463–469.

    Article  Google Scholar 

  • Zhou, Y., Ning, X., Liao, X., Lin, M., Liu, J., & Wang, J. (2013). Characterization and environmental risk assessment of heavy metals found in fly ashes from waste filter bags obtained from Chinese steel plant. Ecotoxicology and Environmental Safety, 95, 130–136.

    Article  Google Scholar 

Download references

Acknowledgments

The authors duly acknowledge the support of DST-PURSE and UGC-SAP program to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasree Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, D., Chatterjee, D., Chakravarty, S. et al. Investigation of Environmental-Concern Trace Elements in Coal and Their Combustion Residues from Thermal Power Plants in Eastern India. Nat Resour Res 28, 1505–1520 (2019). https://doi.org/10.1007/s11053-019-09451-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09451-2

Keywords

Navigation