Skip to main content
Log in

The distribution and extent of heavy metal accumulation in song sparrows along Arizona’s upper Santa Cruz River

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Heavy metals are persistent environmental contaminants, and transport of metals into the environment poses a threat to ecosystems, as plants and wildlife are susceptible to long-term exposure, bioaccumulation, and potential toxicity. We investigated the distribution and cascading extent of heavy metal accumulation in southwestern song sparrows (Melospiza melodia fallax), a resident riparian bird species that occurs along the US/Mexico border in Arizona’s upper Santa Cruz River watershed. This study had three goals: (1) quantify the degree of heavy metal accumulation in sparrows and determine the distributional patterns among study sites, (2) compare concentrations of metals found in this study to those found in studies performed prior to a 2009 international wastewater facility upgrade, and (3) assess the condition of song sparrows among sites with differing potential levels of exposure. We examined five study sites along with a reference site that reflect different potential sources of contamination. Body mass residuals and leukocyte counts were used to assess sparrow condition. Birds at our study sites typically had higher metal concentrations than birds at the reference site. Copper, mercury, nickel, and selenium in song sparrows did exceed background levels, although most metals were below background concentrations determined from previous studies. Song sparrows generally showed lower heavy metal concentrations compared to studies conducted prior to the 2009 wastewater facility upgrade. We found no cascading effects as a result of metal exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Although Se is not truly a heavy metal, for simplicity, it will be referred to as such throughout this paper.

References

  • Abduljaleel, S. A., Shuhaimi-othman, M., & Babji, A. (2012). Assessment of trace metals contents in chicken (Gallus gallus domesticus) and quail (Coturnix coturnix japonica) tissues from Selangor (Malaysia). Journal of Environmental Science and Technology, 5, 441–451.

    Article  CAS  Google Scholar 

  • Agusa, T., Matsumoto, T., Ikemoto, T., Anan, Y., Kubota, R., Yasunaga, G., et al. (2005). Body distribution of trace elements in black-tailed gulls from Rishiri Island, Japan: age-dependent accumulation and transfer to feathers and eggs. Environmental Toxicology and Chemistry, 24(9), 2107–2120.

    Article  CAS  Google Scholar 

  • Aldrich, J. W. (1985). Ecogeographical variation in size and proportions of song sparrows (Melospiza melodia). The Wilson Bulletin, 97(4), 586–588.

    Google Scholar 

  • Bennett, G. (1970). Simple techniques for making avian blood smears. Canadian Journal of Zoology, 48(3), 585–586.

    Article  Google Scholar 

  • Braune, B., & Gaskin, D. (1987). Mercury levels in Bonaparte's gulls (Larus Philadelphia) during autumn molt in the Quoddy region, New Brunswick, Canada. Archives of Environmental Contamination and Toxicology, 16(5), 539–549.

    Article  CAS  Google Scholar 

  • Burger, J. (1993). Metals in avian feathers: bioindicators of environmental pollution. Reviews of Environmental contamination and Toxicology, 5, 203–311.

    Google Scholar 

  • Burger, J., & Gochfeld, M. (1997). Age differences in metals in the blood of herring (Larus argentatus) and Franklin's (Larus pipixcan) gulls. Archives of Environmental Contamination and Toxicology, 33(4), 436–440.

    Article  CAS  Google Scholar 

  • Burger, J., Schreiber, E. A. E., & Gochfeld, M. (1992). Lead, cadmium, selenium and mercury in seabird feathers from the tropical mid-Pacific. Environmental Toxicology and Chemistry, 11(6), 815–822.

    Article  CAS  Google Scholar 

  • Chastel, O., Weimerskirch, H., & Jouventin, P. (1995). Body condition and seabird reproductive performance: a study of three petrel species. Ecology, 76, 2240–2246.

    Article  Google Scholar 

  • Costa, R. A., Petronilho, J. M. S., Soares, A. M. V. M., & Vingada, J. V. (2011). The use of passerine feathers to evaluate heavy metal pollution in central Portugal. Bulletin of Environmental Contamination and Toxicology, 86(3), 352–356.

    Article  CAS  Google Scholar 

  • Craighead, D., & Bedrosian, B. (2008). Blood lead levels of common ravens with access to big-game offal. Journal of Wildlife Management, 72(1), 240–245.

    Article  Google Scholar 

  • Dauwe, T., Lieven, B., Ellen, J., Rianne, P., Ronny, B., & Marcel, E. (2002). Great and blue tit feathers as biomonitors for heavy metal pollution. Ecological Indicators, 1(4), 227–234.

    Article  CAS  Google Scholar 

  • Davis, A., & Arcese, P. (1999). An examination of migration in song sparrow using banding recovery data. North American Bird Bander, 24, 124–128.

    Google Scholar 

  • Deng, H., Zhang, Z., Chang, C., & Wang, Y. (2007). Trace metal concentration in great tit (Parus major) and greenfinch (Carduelis sinica) at the western mountains of Beijing, China. Environmental Pollution, 148(2), 620–626.

    Article  CAS  Google Scholar 

  • Dmowski, K. (2000). Environmental monitoring of heavy metals with magpie (Pica pica) feathers—an example of Polish polluted and control areas. In: B. Markert, & K. Friese (eds.), Trace Metals in the Environment (Vol. 4, pp. 455–477): Elsevier.

  • Eens, M., Pinxten, R., Verheyen, R. F., Blust, R., & Bervoets, L. (1999). Great and blue tits as indicators of heavy metal contamination in terrestrial ecosystems. Ecotoxicology and Environmental Safety, 44(1), 81–85.

    Article  CAS  Google Scholar 

  • Eeva, T., Hasselquist, D., Langefors, Å., Tummeleht, L., Nikinmaa, M., & Ilmonen, P. (2005). Pollution related effects on immune function and stress in a free-living population of pied flycatcher Ficedula hypoleuca. Journal of Avian Biology, 36(5).

  • Evers, D. C., Kaplan, J. D., Meyer, M. W., Reaman, P. S., Braselton, W. E., Major, A., et al. (1998). Geographic trend in mercury measured in common loon feathers and blood. Environmental Toxicology and Chemistry, 17(2), 173–183.

    Article  CAS  Google Scholar 

  • Fairbrother, A., & Fowles, J. (1990). Subchronic effects of sodium selenite and selenomethionine on several immune-functions in mallards. Archives of Environmental Contamination and Toxicology, 19(6), 836–844.

    Article  CAS  Google Scholar 

  • Fairbrother, A., Smits, J., & Grasman, K. (2004). Avian immunotoxicology. Journal of Toxicology and Environmental Health Part B: Critical Reviews, 7(2), 105–137.

    Article  CAS  Google Scholar 

  • Gardner, W. S., Kendall, D. R., Odom, R. R., Windom, H. L., & Stephens, J. A. (1978). The distribution of methyl mercury in a contaminated salt marsh ecosystem. Environmental Pollution (1970), 15(4), 243–251.

    Article  CAS  Google Scholar 

  • Golden, N. H., Rattner, B. A., McGowan, P. C., Parsons, K. C., & Ottinger, M. A. (2003). Concentrations of metals in feathers and blood of nestling black-crowned night-herons (Nycticorax nycticorax) in Chesapeake and Delaware Bays. Bulletin of Environmental Contamination and Toxicology, 70(2), 385–393.

    Article  CAS  Google Scholar 

  • Houwen, B. (2000). Blood film preparation and staining procedures. Laboratory Hematology, 6(1), 1–7.

    Google Scholar 

  • Janssens, E., Dauwe, T., Bervoets, L., & Eens, M. (2001). Heavy metals and selenium in feathers of great tits (Parus major) along a pollution gradient. Environmental Toxicology and Chemistry, 20(12), 2815–2820.

    Article  CAS  Google Scholar 

  • Jaspers, V., T. Dauwe, R. Pinxten, L. Bervoets, R. Blust, & M. Eens. (2004). The importance of exogenous contamination on heavy metal levels in bird feathers. A field experiment with free-living great tits, Parus major. Journal of Environmental Monitoring, 6, 356–360.

    Google Scholar 

  • Kahle, S., & Becker, P. H. (1999). Bird blood as bioindicator for mercury in the environment. Chemosphere, 39(14), 2451–2457.

    Article  CAS  Google Scholar 

  • Kakkar, P., & Jaffery, F. N. (2005). Biological markers for metal toxicity. Environmental Toxicology and Pharmacology, 19(2), 335–349.

    Article  CAS  Google Scholar 

  • King, K. A., Zaun, J. Z., and Velasco, L. A. (1999). Contaminants as a limiting factor of fish and wildlife populations in the Santa Cruz River. U.S. Fish and Wildlife Service, Region 2 Contaminants Program, Phoenix, AZ. Project #22410-1130-2F35.

  • Kirkpatrick, C., Conway, C. J.,, LaRoche. D. & Robinson, G. (2010). The influence of water quality on the health of riparian bird communities in Arizona. Wildlife Research Report #2009-03, U.S. Geological Survey, Arizona Cooperative Fish and Wildlife Research Unit, Tucson, AZ

  • Lane, O., Brenes, O., Doherty, P., Elizondo, P., Taylor, R., and Rinker, B. (2012). Heavy metals screening in feathers of resident birds and neotropical migrants at selected sites in Costa Rica and Panama. Biodiversity Research Institute. www.coterc.org/wp-content/uploads/2010/03/2011-Lane-et-al.pdf

  • Llacuna, S., Gorriz, A., Sanpera, C., & Nadal, J. (1995). Metal accumulation in three species of passerine birds (Emberiza cia, Parus major, and Turdus merula) subjected to air pollution from a coal-fired power plant. Archives of Environmental Contamination and Toxicology, 28(3), 298–303.

    Article  CAS  Google Scholar 

  • Locke, L. N., & Bagley, G. E. (1967). Lead poisoning in a sample of Maryland mourning doves. Journal of Wildlife Management, 31, 515–518.

    Article  Google Scholar 

  • Long, K. R., DeYoung, J. H., & Ludington, S. D. (1998). Database of significant deposits of gold, silver, copper, lead, and zinc in the United States. Part A: database description and analysis. US Geological Survey Open File Report, 98-206A.

  • Malm, O., Pfeiffer, W. C., Souza, C. M., & Reuther, R. (1990). Mercury pollution due to gold mining in the Madeira River basin, Brazil. Ambio, 19(1), 11–15.

    Google Scholar 

  • Martínez-López, E., María-Mojica, P., Martínez, J. E., Calvo, J. F., Romero, D., & García-Fernández, A. J. (2005). Cadmium in feathers of adults and blood of nestlings of three raptor species from a nonpolluted Mediterranean forest, Southeastern Spain. Bulletin of Environmental Contamination and Toxicology, 74, 477–484.

    Article  Google Scholar 

  • Matz, A. C., & Rocque, D. A. (2007). Contaminants in lesser scaup eggs and blood from Yukon Flats National Wildlife Refuge, Alaska. The Condor, 109(4), 852–861.

    Article  Google Scholar 

  • Møller, A. P., Ph. Christe, J. ErrizØe, & J. Mavarez. (1998). Condition, disease and immune defence. Oikos, 83, 301–306

  • Morel, F. M. M., Kraepiel, A. M. L., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology, Evolution, and Systematics, 29, 543–566.

    Article  Google Scholar 

  • Morishita, T. Y., Aye, PP., Ley, E. C., & Harr, B. S. (1999). Survey of pathogens and blood parasites in free-living passerines. Avian Diseases, 43(3), 549–552

    Google Scholar 

  • Morrissey, C. A., Bscendell-Young, L. I., & Elliott, J. E. (2005). Assessing trace-metal exposure to American dippers in mountain streams of southwestern British Columbia, Canada. Environmental Toxicology and Chemistry, 24(4), 836–845.

    Article  CAS  Google Scholar 

  • Myers, T. (2010). Technical memorandum review of the proposed Rosemont Ranch Mine hydrogeologic analysis and groundwater model. Prepared for Pima County and Pima County Regional Flood Control District

  • Nam, D.–H., Anan, Y., Ikemoto, T., Okabe, Y., Kim, E.-Y., Subramanian, A., K. et al. (2005). Specific accumulation of 20 trace elements in great cormorants (Phalacrocorax carbo) from Japan. Environmental Pollution, 134(3), 503–514

  • Norman, L. (2010). Urbanization and environmental health in Arizona Colonias. In Donelson, A. J., & Esparza, A. X. (Eds). The colonias reader: economy, housing, and public health in US-Mexico border colonias. University of Arizona Press

  • Norman, L. M., Gray, F., Guertin, D. P., & Wissler, C. (2008). Analysis of a watershed model of soil and waste rock: using GIS to predict and track the fate of acid-mine drainage and impacts on surface water quality in historic ghost towns of southeast Arizona. Environmental Monitoring and Assessment, 145, 145–157.

    Article  CAS  Google Scholar 

  • Osofsky, A., Jowett, P. L. H., Hosgood, G., & Tully, T. N. (2001). Determination of normal blood concentrations of lead, zinc, copper, and iron in Hispaniolan Amazon parrots (Amazona ventralis). Journal of Avian Medicine and Surgery., 15(1), 31–36.

    Article  Google Scholar 

  • Ots, I., Murumagi, A., & Horak, P. (1998). Haematological health state indices of reproducing great tits: methology and sources of natural variation. Functional Ecology, 12(4), 700–707.

    Article  Google Scholar 

  • Pan, C., Zheng, G., & Zhang, Y. (2008). Concentrations of metals in liver, muscle and feathers of tree sparrow: age, inter-clutch variability, gender, and species differences. Bulletin of Environmental Contamination and Toxicology, 81(6), 558–560.

    Article  CAS  Google Scholar 

  • Ralph, C. J., Geupel, G. R., Pyle, P., Martin, T. E., & DeSante, D. F. (1993). Handbook of field methods for monitoring landbirds. USDA Forest Service/UNL Faculty Publications, 105.

  • Rattner, B., Golden, N., Toschik, P., McGowan, P., & Custer, T. (2008). Concentrations of metals in blood and feathers of nestling ospreys (Pandion haliaetus) in Chesapeake and Delaware Bays. Archives of Environmental Contamination and Toxicology, 54(1), 114–122.

    Article  CAS  Google Scholar 

  • Rocke, T. E., & Samuel, M. D. (1991). Effects of lead shot ingestion on selected cells of the mallard immune system. Journal of Wildlife Diseases, 27(1), 1–9.

    Article  CAS  Google Scholar 

  • Rosenberg, K. V., Ohmart, R. D., & Anderson, B. W. (1982). Community organization of riparian breeding birds: response to an annual resource peak. The Auk, 99(2), 260–274.

    Google Scholar 

  • SAS Institute Inc. (2010). JMP version 9. Cary NC: SAS Institute Inc.

    Google Scholar 

  • Sharma, R. K., & Agrawal, M. (2005). Biological effects of heavy metals: an overview. Journal of environmental Biology, 26(2 Suppl), 301–313.

    CAS  Google Scholar 

  • Snoeijs, T., Dauwe, T., Pinxten, R., Vandesande, F., & Eens, M. (2004). Heavy metal exposure affects the humoral immune response in a free-living small songbird, the great tit (Parus major). Archives of Environmental Contamination and Toxicology, 46(3), 399–404.

    Article  CAS  Google Scholar 

  • Takekawa, J., Wainwright-De La Cruz, S., Hothem, R., & Yee, J. (2002). Relating body condition to inorganic contaminant concentrations of diving ducks wintering in coastal California. Archives of Environmental Contamination and Toxicology, 42(1), 60–70.

    Article  CAS  Google Scholar 

  • Thompson, D. R., & Dowding, J. E. (1999). Site-specific heavy metal concentrations in blood of South Island pied flycatchers Haematopus ostralegus finschi from the Auckland region, New Zealand. Marine Pollution Bulletin, 38, 202–206.

    Article  CAS  Google Scholar 

  • Trust, K. A., Miller, M. W., Ringelman, J. K., & Orme, I. (1990). Effects of ingested lead on antibody production in mallards (Anas platyrhynchos). Journal of Wildlife Diseases, 26(3), 316–322.

    Article  CAS  Google Scholar 

  • Van Wyk, E., Van der Bank, F., Verdoorn, G., & Hofmann, D. (2001). Selected mineral and heavy metal concentrations in blood and tissues of vultures in different regions of South Africa. South African Journal of Animal Science, 31(2), 57–64.

    Google Scholar 

  • Wayland, M., Garcia-Fernandez, A., Neugebauer, E., & Gilchrist, H. (2001). Concentrations of cadmium, mercury and selenium in blood, liver and kidney of common eider ducks from the Canadian Arctic. Environmental Monitoring and Assessment, 71(3), 255–267.

    Article  CAS  Google Scholar 

  • Webb, R. H., & Leake, S. A. (2006). Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States. Journal of Hydrology, 320(3), 302–323.

    Article  Google Scholar 

  • Winter, S., & Streit, B. (1992). Organochlorine compounds in a three-step terrestrial food chain. Chemosphere, 24, 1765–1774.

    Article  CAS  Google Scholar 

  • Wong, S., Li, X., Zhang, G., Qi, S., & Min, Y. (2002). Heavy metals in agricultural soils of the Pearl River Delta, South China. Environmental Pollution, 119(1), 33–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Marshall Massayesva and Francesca Massarotto for their help with fieldwork. Arizona State Parks, Tumacacori National Historical Park, and the US International Boundary and Water Commission graciously provided access to study sites. The US Geological Survey, the US National Park Service, T&E Inc., the Appleton-Whittell Research Ranch Foundation, and Arizona Field Ornithologists generously provided funding for this study. This project was completed with IACUC approval, PHS Assurance No. A-3248-01, USDA No. 86-3. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Lester.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lester, M.B., van Riper, C. The distribution and extent of heavy metal accumulation in song sparrows along Arizona’s upper Santa Cruz River. Environ Monit Assess 186, 4779–4791 (2014). https://doi.org/10.1007/s10661-014-3737-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3737-2

Keywords

Navigation