Skip to main content
Log in

Characterizing hydrochemical properties of springs in Taiwan based on their geological origins

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study was performed to characterize hydrochemical properties of springs based on their geological origins in Taiwan. Stepwise discriminant analysis (DA) was used to establish a linear classification model of springs using hydrochemical parameters. Two hydrochemical datasets—ion concentrations and relative proportions of equivalents per liter of major ions—were included to perform prediction of the geological origins of springs. Analyzed results reveal that DA using relative proportions of equivalents per liter of major ions yields a 95.6% right assignation, which is superior to DA using ion concentrations. This result indicates that relative proportions of equivalents of major hydrochemical parameters in spring water are more highly associated with the geological origins than ion concentrations do. Low percentages of Na +  equivalents are common properties of springs emerging from acid-sulfate and neutral-sulfate igneous rock. Springs emerging from metamorphic rock show low percentages of Cl −  equivalents and high percentages of HCO\(_{3}^{-}\) equivalents, and springs emerging from sedimentary rock exhibit high Cl − /SO\(_{4}^{2-}\) ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afşin, M., Kuşcu, I., Elhatip, H., & Dirik, K. (2006). Hydrogeochemical properties of CO2-rich thermal-mineral waters in Kayseri (Central Anatolia), Turkey. Environmental Geology, 50, 24–36.

    Article  Google Scholar 

  • Alberto, W. D., Pilar, D. M., Valeria, A. M., Fabiana, P. S., Cecilia, H. A., & Los Angeles, B. M. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia riverbasin (Córdoba, Argentina). Water Research, 35, 2881–2894.

    Article  CAS  Google Scholar 

  • Alfaro, C., & Wallace, M. (1994). Origin and classification of springs and historical review with current applications. Environmental Geology, 24, 112–124.

    Article  Google Scholar 

  • APHA (1998). Standard methods for the examination of water and water waste (20th ed., pp. 4–158). Washington: American Public Health Assoc.

    Google Scholar 

  • Chen, W. F., & Sung, M. (2009). The redox potential of hot springs in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 20(3), 465–479.

    Article  Google Scholar 

  • Chen, Y. L. (2002). Chemical compositions of hot spring waters in the Tatun volcanic area and their influence on stream waters (pp. 176–197.). Ph.D. Dissertation, Institute of Geosciences, National Taiwan University, Taipei.

  • Cheng, W. T. (1985). Geothermal update report: Taiwan, Republic of China. In Geothermal Resources Council 9, 1985 international symposium on geothermal energy (pp. 191–195). CA, USA.

  • Cherng, F. P., & Wang, J. R. (1984). Corrosion of metals by geothermal fluids in Taiwan’s Tatun volcanic region and novel approaches for controlling the problem. In Proceedings of the international symposium on solving corrosion and scaling problems in geothermal systems (pp. 285–293). San Francisco, CA, USA.

  • Cruz, J. V., & França, Z. (2006). Hydrogeochemistry of thermal and mineral water springs of the Azores archipelago (Portugal). Journal of Volcanology and Geothermal Research, 151, 382–398.

    Article  CAS  Google Scholar 

  • Davisson, M. L., Avisson, M. L., Presser, T. S., & Criss, R. E. (1994). Geochemistry of tectonically expelled fluids from the northern coast ranges, Rumsey-Hills, California, USA. Geochimica et Cosmochimica Acta, 58, 1687–1699.

    Article  CAS  Google Scholar 

  • Delmelle, P., Bernard, A., Kusakabe, M., Fischer, T. P., & Takano, B. (2000). Geochemistry of the magmatic-hydrothermal system of Kawah Ijen volcano, East Java, Indonesia. Journal of Volcanology and Geothermal Research, 97, 31–53.

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater (pp. 413–416). New Jersey: Prentice Hall.

    Google Scholar 

  • González-Partida, E., Carrillo-Chávez, A., Levresse, G., Tello-Hinojosa, E., Venegas-Salgado, S., Ramirez-Silva, G., et al. (2005). Hydro-geochemical and isotopic fluid evolution of the Los Azufres geothermal field, Central Mexico. Applied Geochemistry, 20, 23–39.

    Article  Google Scholar 

  • Ho, C. S. (1988). An introduction to the geology of Taiwan, explanatory text of the geologic map of Taiwan. Central Geological Survey, the Ministry of Economic Affairs, Taipei, Taiwan.

    Google Scholar 

  • Hsu, B. M., Chen, C. H., Wan, M. T., & Cheng, H. W. (2006). Legionella prevalence in hot spring recreation areas of Taiwan. Water Research, 40, 3267–3273.

    Article  CAS  Google Scholar 

  • ITRI (Industrial Technology Research Institute) (2004). A study on the investigation, exploitation and utilization of hot-spring resources in Taiwan (1/4–4/4) (49 pp.). Water Resources Agency (MOEA/WRA-920036V4), Taipei.

  • Kreamer, D. K., Hodge, V. F., Rabinowitz, I., Johannesson, K. H., & Stetzenbach, K. J. (1996). Trace element geochemistry in water from selected springs in Death Valley National Park, California. Ground Water, 34, 95–103.

    Article  CAS  Google Scholar 

  • Lambrakis, N., Antonakos, A., & Panagopoulos, G. (2004). The use of multicomponent statistical analysis in hydrogeological environmental research. Water Research, 38, 1862–1872.

    Article  CAS  Google Scholar 

  • Lee, H. F., Yang, T. F., Lan, T. F., Song, S. R., & Tsao, S. (2005). Fumarolic gas composition of the Tatun Volcano Group, Northern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 16, 843–863.

    Google Scholar 

  • Lee, J. J., Jang, C. S., Wang, S. W., Liang, C. P., & Liu, C. W. (2008). Delineation of spatial redox zones using discriminant analysis and geochemical modeling in arsenic-affected groundwater aquifers. Hydrological Processes, 22, 3029–3041.

    Article  CAS  Google Scholar 

  • Mariner, R. H., Evans, W. C., Presser, T. S., & White, L. D. (2003). Excess nitrogen in selected thermal and mineral springs of the Cascade Range in northern California, Oregon, and Washington: Sedimentary or volcanic in origin? Journal of Volcanology and Geothermal Research, 121, 99–114.

    Article  CAS  Google Scholar 

  • Meinzer, O. E. (1927). Large springs in the United States (94 pp.). U.S. Geological Survey, Water Supply Paper 557.

  • Minissale, A., Magro, G., Vaselli, O., Verrucchi, C., & Perticone, I. (1997). Geochemistry of water and gas discharges from the Mt. Amiata silicic complex and surrounding areas (central Italy). Journal of Volcanology and Geothermal Research, 79, 223–251.

    Article  CAS  Google Scholar 

  • Papatheodorou, G., Demopoulou, G., & Lambrakis, N. (2006). A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques. Ecological Modelling, 193, 759–776.

    Article  Google Scholar 

  • Papatheodorou, G., Lambrakis, N., & Panagopoulos, G. (2007). Application of multivariate statistical procedures to the hydrochemical study of a coastal aquifer: An example from Crete, Greece. Hydrological Processes, 21, 1482–1495.

    Article  CAS  Google Scholar 

  • Samsudin, A. R., Hamzah, U., Rahman, R. A., Siwar, C., Jani, M. F. M., & Othman, R. (1997). Thermal springs of Malaysia and their potential development. Journal of Asian Earth Sciences, 15, 275–284.

    Article  Google Scholar 

  • Sanada, T., Takamatsu, N., & Yoshiike, Y. (2006). Geochemical interpretation of long-term variations in rare earth element concentrations in acidic hot spring waters from the Tamagawa geothermal area, Japan. Geothermics, 35, 141–155.

    Article  CAS  Google Scholar 

  • Sawyer, C. N., & McCarty, P. L. (1978). Chemistry for environmental engineering (3rd ed., pp. 371–373). New York: McGraw-Hill.

    Google Scholar 

  • Sharma, S. (1996). Applied multivariate techniques (pp. 264–273). New York: Wiley.

    Google Scholar 

  • Song, S. R., Chen, Y. L., Kiu, C. M., Ku, W. Y., Chen, H. F., Liu, Y. J., et al. (2005). Hydrochemical changes in spring waters in Taiwan: Implications for evaluating sites for earthquake precursory monitoring. Terrestrial, Atmospheric and Oceanic Sciences, 16, 745–762.

    Google Scholar 

  • SPSS Inc. (1998). SPSS BASE 8.0-Application Guide. SPSS Inc., Chicago.

    Google Scholar 

  • Stambuk-Gilijanovic, N. (2008). Characteristics and origin of the hydrogen sulphide spring water from Split spa (Southern Croatia). Environmental Monitoring and Assessment, 140, 109–117.

    Article  Google Scholar 

  • Sukenik, S., Flusser, D., & Abu-Shakra, M. (1999). The role of spa therapy in various rheumatic diseases. Rheumatic Disease Clinics of North America, 25, 883–897.

    Article  CAS  Google Scholar 

  • Swanson, S. K., Bahr, J. M., Schwar, M. T., & Potter, K. W. (2001). Two-way cluster analysis of geochemical data to constrain spring source waters. Chemical Geology, 179, 73–91.

    Article  CAS  Google Scholar 

  • Tarits, C., Renaut, R. W., Tiercelin, J. J., Hérissé, A. L., Cotton, J., & Cabon, J. Y. (2006). Geochemical evidence of hydrothermal recharge in Lake Baringo, central Kenya Rift Valley. Hydrological Processes, 20, 2027–2055.

    Article  CAS  Google Scholar 

  • Wiggine, B. A., Andrew, R. W., Conway, R. A., Corr, C. L., Dobratz, E. J., Dougherty, D. P., et al. (1999). Use of antibiotic resistance analysis to identify nonpoint sources of fecal pollution. Applied Environmental Microbiology, 65, 3483–3486.

    Google Scholar 

  • WRA (Water Resources Agency) (2003). Law of Hot Springs. Water Resources Agency, Ministry of Economic Affair, Taiwan (Available at http://www.wra.gov.tw).

  • Yee, N., Phoenix, V. R., Konhauser, K. O., Benning, L. G., & Ferris, F. G. (2003). The effect of cyanobacteria on silica precipitation at neutral pH: Implications for bacterial silicification in geothermal hot springs. Chemical Geology, 199, 83–90.

    Article  CAS  Google Scholar 

  • Zhu, B. Q., & Yu, H. (1995). The use of geochemical indicator elements in the exploration for hot water sources within geothermal fields. Journal of Geochemical Exploration, 55, 125–136.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Wuing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, CS., Chen, JS., Lin, YB. et al. Characterizing hydrochemical properties of springs in Taiwan based on their geological origins. Environ Monit Assess 184, 63–75 (2012). https://doi.org/10.1007/s10661-011-1947-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-1947-4

Keywords

Navigation