Skip to main content
Log in

Geochemical Characterization of Surface Water and Groundwater in Soummam Basin, Algeria

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Multivariate statistical methods and geochemical modeling were used to assess spatial variation of water quality of the Soummam basin, Algeria. The application of hierarchical cluster analysis (HCA) showed three main groups of samples. Group 1 samples are exclusively composed of surface water. Groups 2 and 3 samples consist of groundwater. Discriminant analysis assigned about 98.6% of the cases grouped by HCA. All groups are super-saturated with Ca-montmorillonite, dolomite, gibbsite, K-mica, kaolinite, and quartz, and all these groups are under-saturated with albite, anhydrite, anorthite, CO2(g), gypsum, halite, melanterite, and smithsonite. The results of analysis of variance indicate that the saturation indices of each of the mineral phases are significant except for chalcedony and quartz (p > 0.05). The results obtained by inverse geochemical modeling show the dissolution of albite, which justifies Na enrichment during the chemical evolution of groundwater. Calcite, dolomite, Ca-montmorillonite, kaolinite, illite, gibbsite, and K-mica are shown to have always precipitated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Alkarkhi, F. M. A., Ismail, N., & Easa, A. M. (2008). Assessment of arsenic and heavy metal contents in cockles (Anadara granosa) using multivariate statistical techniques. Journal of Hazardous Materials, 150, 783–789.

    Article  Google Scholar 

  • APHA. (1989). Standard methods for examination of water and wastewater (17th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • APHA. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC: American public Health Association.

    Google Scholar 

  • APHA-AWWA-WPCF. (1995). Standard methods for the examination of water and waste water (19th ed.). New York: APHA.

    Google Scholar 

  • Appelo, C. A., & Postma, D. (1993). Geochemistry, groundwater and pollution. Rotterdam: Balkema.

    Google Scholar 

  • Ashley, R. P., & Lloyd, J. W. (1978). An example of the use of factor analysis and cluster analysis in groundwater chemistry interpretation. Journal of Hydrology, 39(3–4), 335–364.

    Google Scholar 

  • Belkhiri, L., Boudoukha, A., Mouni, L., & Baouz, T. (2010). Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—A case study: Ain Azel plain (Algeria). Geoderma, 159, 390–398.

    Article  Google Scholar 

  • Belkhiri, L., & Mouni, L. (2013). Geochemical modeling of groundwater in the El Eulma area, Algeria. Desalination and Water Treatment, 51, 1468–1476.

    Article  Google Scholar 

  • Belkhiri, L., Mouni, L., & Tiri, A. (2011). Water–rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria. Environmental Geochemistry and Health, 34, 1–13.

    Article  Google Scholar 

  • Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington

  • Clinckx, C. (1973). Etude hydrogéologique de la nappe alluvialle de la basse Soummam (SIDI-AICHE-BEJAIA). Algerie: D.E.M.R.H.

    Google Scholar 

  • Craig, E., & Anderson, M. P. (1979). The effects of urbanization of ground water quality. A case study of ground water ecosystems. Environmental Conservation, 30(2), 104–130.

    Google Scholar 

  • Davis, J. C. (1986). Statistics and data analysis in geology (p. 647). New York: Wiley.

    Google Scholar 

  • Gaillardet, J., Dupré, B., Louvat, P., & Allègre, C. J. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159, 3–30.

    Article  Google Scholar 

  • Garrels, R. M., & MacKenzie, F. T. (1971). Evolution of sedimentary rocks. New York: Norton.

    Google Scholar 

  • Glynn, P. D., & Brown, J. G. (1996). Reactive transport modeling of acidic metal-contaminated groundwater at a site with sparse spatial information. In P. C. Lichtner, C. I. Steefel, & E. H. Oelkers (Eds.), Reactive transport in porous media, reviews in mineralogy (pp. 377–438)., 34 Washington, DC: Mineralogical Society of America.

    Google Scholar 

  • Güler, C., & Thyne, G. D. (2004). Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells-Owens Valley Area, Southern California, USA. Journal of Hydrology, 285(1–4), 177–198.

    Article  Google Scholar 

  • Güler, C., Thyne, G. D., McCray, J. E., & Turner, A. K. (2002). Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal, 10, 455–474.

    Article  Google Scholar 

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial (Pisuerga river, Spain) by principal component analysis. Water Research, 34, 807–816.

    Article  Google Scholar 

  • Helgeson, H. C. (1968). Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions: I. Thermodynamic relations. Geochimica et Cosmochimica Acta, 32, 853–877.

    Article  Google Scholar 

  • Jayakumar, R., & Siraz, L. (1997). Factor analysis in hydro geochemistry of coastal aquifers—a preliminary study. Environmental Geochemistry, 31(3/4), 174–177.

    Google Scholar 

  • Kim, J. H., Kim, R. H., Lee, J., Cheong, T. J., Yum, B. W., & Chang, H. W. (2005). Multivariate statistical analysis to identify the major factors governing quality in the coastal area of Kimje. Hydrological Sciences, 19(6), 1261–1276.

    Article  Google Scholar 

  • Langmuir, D. (1971). The geochemistry of some carbonate ground waters in central Pennsylvania. Geochimica et Cosmochimica Acta, 35, 1023–1045.

    Article  Google Scholar 

  • Li, S., Gu, S., Liu, W., Han, H., & Zhang, Q. (2008). Water quality in relation to the land use and land cover in the Upper Han River basin, China. Catena, 75, 216–222.

    Article  Google Scholar 

  • Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. The Science of the Total Environment, 313, 77–89.

    Article  Google Scholar 

  • Massart, D. L., Vandeginste, B. G. M., Deming, S. N., Michotte, Y., & Kaufman, L. (1988). Chemometrices: A textbook. Amsterdam: Elsevier.

    Google Scholar 

  • Meybeck, M. (1987). Global chemical weathering from surficial rocks estimated from river dissolved loads. American Journal of Science, 287, 401–428.

    Article  Google Scholar 

  • Miller, G. T. (1979). Living in the environment. Belmonol, CA: Wordsworth Publishing Company.

    Google Scholar 

  • Mouni, L. (2004). Etude et caractérisation physico-chimique des rejets dans l’oued Soummam. Algérie: Mémoire de magister, Univ. Béjaia.

    Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s Guide to PHREEQC (Version 2)-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. United States Geological Survey, Water Resources Investigations Report 99-4259, Washington, DC.

  • Perrier, J. (1964). Défense contre les eaux nuisibles de l’oued Soummam, mémoire préliminaire, Paris.

  • Plummer, L. N., Prestemon, E. C., & Parkhurst, D. L. (1991). An interactive code (NETPATH) for modeling net geochemical reactions a long a flow path. U.S. Geological Survey Water Resources Investigations Report, pp. 91–4087.

  • Raghunath, R., Murthy, T. R. S., & Raghavan, B. R. (2002). The utility of multivariate statistical techniques in hydrogeochemical studies: An example from Karnataka, India. Water Research, 36, 2437–2442.

    Article  Google Scholar 

  • Reisenhofer, E., Adami, G., & Barbieri, P. (1998). Using chemical and physical parameters to define the quality of karstic fresh waters (Timavo River, North-eastern Italy): A chemometric approach. Water Research, 32, 1193–1203.

    Article  Google Scholar 

  • Rowell, D. J. (1994). Soil science: Methods and applications. UK: Longman Scientific and Technical.

    Google Scholar 

  • Simeonov, V., Simeonova, P., & Tsitouridou, R. (2004). Chemometric quality assessment of surface waters two case studies. Chemical and Engineering Ecology, 11(6), 449–469.

    Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., et al. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37, 4119–4124.

    Article  Google Scholar 

  • Simeonova, P., Simeonov, V., & Andreev, G. (2003). Analysis of the struma river water quality. Central European Journal of Chemistry, 2, 121–126.

    Article  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 38, 3980–3992.

    Article  Google Scholar 

  • Snedecor, G. W., & Cochran, W. G. (1989). Statistical methods. Ames: Iowa State University Press.

    Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1987). Geochemistry of the Amazon. 3. Weathering chemistry and limits to dissolved inputs. Journal of Geophysical Research Oceans, 92, 8293–8302.

    Article  Google Scholar 

  • Suk, H., & Lee, K. K. (1999). Characterization of hydrochemical system through multivariate analysis: Clustering into zone. Groundwater, 37(3), 358–366.

    Article  Google Scholar 

  • Swanson, S., Bahr, J., Schwar, M., & Potter, K. (2001). Two-way cluster analysis of geochemical data to constrain spring source waters. Chemical Geology, 179(1–4), 73–91.

    Article  Google Scholar 

  • Taboada, J., Vaamonle, A., Saavedra, A., & Alejano, L. (1997). Application of geostatistical techniques to exploitation planning in slate quarries. Engineering Geology, 47(3), 269–277.

    Article  Google Scholar 

  • Vaseli, O., Buccianti, A., De Siena, C., Coradossi, N., & Angelone, M. (1997). Geochemical characterisation of ophiolitic soils in a temperate climate; a multivariate statistical approach. Geoderma, 75(1–2), 117–123.

    Article  Google Scholar 

  • Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32, 3581–3592.

    Article  Google Scholar 

  • Voncina, D. B., Dobcnik, D., Novic, M., & Zupan, J. (2002). Chemometric characterisation of the quality of river water. Analytica Chimica Acta, 462, 87–100.

    Article  Google Scholar 

  • WHO. (2006). Guidelines for drinking-water quality (third ed., vol. 1), Recommendations. World Health Organization, Geneva.

Download references

Acknowledgments

The authors want to thank the members of Materials Technology and Process Engineering Laboratory, Bejaia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lazhar Belkhiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkhiri, L., Mouni, L. Geochemical Characterization of Surface Water and Groundwater in Soummam Basin, Algeria. Nat Resour Res 23, 393–407 (2014). https://doi.org/10.1007/s11053-014-9243-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-014-9243-y

Keywords

Navigation