Electronic Commerce Research

, Volume 19, Issue 2, pp 451–470 | Cite as

A data-driven approach for extracting and analyzing collaboration patterns at the interagent and intergroup levels in business process

  • Shanshan Wang
  • Kun ChenEmail author
  • Zhiyong Liu
  • Ren-Yong Guo
  • Jianshan Sun
  • Qiongjie Dai


We developed a data-driven approach for extracting and analyzing the interagent and intergroup collaboration patterns centered on the COLLSTRUC language and its related algorithm. The proposed approach is evaluated by comparing it with existing studies related to collaboration patterns and through an empirical evaluation using Volvo IT event logs.


Interagent and intergroup perspectives collaboration patterns Business-process performance Process event logs 



The work described in this study was partially supported by grants from the National Natural Science Foundation of China (Nos. 71461023, 71573030, 71361017, 71640021).


  1. 1.
    Patel, H., Pettitt, M., & Wilson, J. R. (2012). Factors of collaborative working: A framework for a collaboration model. Applied Ergonomics, 43, 1–26.Google Scholar
  2. 2.
    Cox, T. H., Lobel, S. A., & Mcledd, P. L. (1991). Effects of ethnic group cultural differences on cooperative and competitive behavior on a group task. Academy of Management Journal, 34(4), 827–847.Google Scholar
  3. 3.
    Dillenbourg, P. (1999). What do you mean by collaborative learning. Collaborative-Learning: Cognitive and Computational Approaches, 1, 1–15.Google Scholar
  4. 4.
    Wang, X., Schneider, C., & Valacich, J. S. (2015). Enhancing creativity in group collaboration: How performance targets and feedback shape perceptions and idea generation performance. Computers in Human Behavior, 42, 187–195.Google Scholar
  5. 5.
    De Moor, A. (2006). Community memory activation with collaboration patterns. In Proceedings of the third Prato international community informatics conference (pp. 1–18). Prado, Italy.Google Scholar
  6. 6.
    Geyer, W., Muller, M. J., Moore, M. T., Wilcox, E., Cheng, L.-T., Brownholtz, B., et al. (2006). Activity explorer: Activity-centric collaboration from research to product. IBM Systems Journal, 45(4), 713–738.Google Scholar
  7. 7.
    Briggs, R. O., Vreede, G.-J. D., & Nunamaker, J. F., Jr. (2003). Collaboration engineering with ThinkLets to pursue sustained success with group support systems. Journal of Management Information Systems, 19(4), 31–64.Google Scholar
  8. 8.
    Barros, A., Dumas, M., & ter Hofstede, A. H. (2005). service interaction patterns: Towards a reference framework for service-based business process interconnection. Brisbane, QID: Faculty of IT, Queensland University of Technology.Google Scholar
  9. 9.
    Wang, W., Yu, S., Bekele, T. M., Kong, X., & Xia, F. (2017). Scientific collaboration patterns vary with scholars’ academic ages. Scientometrics, 112(1), 329–343.Google Scholar
  10. 10.
    Lonchamp, J. (1998). Process model patterns for collaborative work. In Proceedings of the 15th IFIP world computer Congress-Telecooperation’98. Vienna, Austria.Google Scholar
  11. 11.
    Van der Aalst, W. M., & ter Hofstede, A. H. (2005). YAWL: Yet another workflow language. Information Systems, 30(4), 245–275.Google Scholar
  12. 12.
    Van der Aalst, W. M., ter Hofstede, A. H., Kiepuszewski, B., & Barros, A. P. (2003). Workflow patterns. Distributed and Parallel Databases, 14(1), 5–51.Google Scholar
  13. 13.
    Russell, N., ter Hofstede, A. H., Edmond, D., & van der Aalst, W. M. (2004). Workflow data patterns: Identification, representation and tool support. Brisbane: Queensland University of Technology.Google Scholar
  14. 14.
    Russell, N., ter Hofstede, A. H., Edmond, D., & van der Aalst, W. M. (2004). Workflow resource patterns. BETA working paper series, WP 127, Eindhoven University of Technology, Eindhoven.Google Scholar
  15. 15.
    Hackman, J. R., & Morris, C. G. (1975). Group tasks, group interaction process, and group performance effectiveness: A review and proposed integration. Advances in Experimental Social Psychology, 8, 45–99.Google Scholar
  16. 16.
    Hackman, J. R., Brousseau, K. R., & Weiss, J. A. (1976). The interaction of task design and group performance strategies in determining group effectiveness. Organizational Behavior and Human Performance, 16(2), 350–365.Google Scholar
  17. 17.
    Fan, S., Li, X., & Zhao, J. L. (2014). Collaboration process pattern approach to improving teamwork performance: A data mining-based methodology. INFORMS Journal on Computing, 29, 438–456.Google Scholar
  18. 18.
    Lowry, P. B., Nunamaker, J. F., Jr., Curtis, A. M., & Lowry, M. R. (2005). The impact of process structure on novice, internet-based, asynchronous-distributed collaborative writing teams. IEEE Transactions on Professional Communication, 48(4), 341–364.Google Scholar
  19. 19.
    Briggs, R. O., Reinig, B. A., & de Vreede, G.-J. (2006). Meeting satisfaction for technology-supported groups: An empirical validation of a goal-attainment model. Small Group Research, 37(6), 585–611.Google Scholar
  20. 20.
    Bos, N., Shami, N. S., Olson, J. S., Cheshin, A., & Nan, N. (2004). In-group/out-group effects in distributed teams: An experimental simulation. In Proceedings of the 2004 ACM conference on computer supported cooperative work (pp. 429–436). Chicago, IL.Google Scholar
  21. 21.
    Tjosvold, D. (1988). Cooperative and competitive interdependence. Group & Organization Studies, 13(3), 274–289.Google Scholar
  22. 22.
    Herbsleb, J. D., Mockus, A., Finholt, T. A., & Grinter, R. E. (2000). Distance, dependencies, and delay in a global collaboration. In Proceedings of the 2000 ACM conference on computer supported cooperative work (pp. 319–328). Philadelphia, PA.Google Scholar
  23. 23.
    Arias, M., & Rojas, E. (2013). Volvo incident and problem management behavior analysis. In Business process intelligence challenge, Santiago, Chile.Google Scholar
  24. 24.
    McElheran, K. (2015). Do market leaders lead in business process innovation? The case(s) of e-business adoption. Management Science, 61(6), 1197–1216.Google Scholar
  25. 25.
    Wieder, B., Booth, P., Matolcsy, Z. P., & Ossimitz, M. L. (2006). The impact of ERP systems on firm and business process performance. Journal of Enterprise Information Management, 19(1), 13–29.Google Scholar
  26. 26.
    Van Dongen, B. F., de Medeiros, A. K. A., Verbeek, H. M. W., Weijters, A. J. M. M., & van der Aalst, W. M. (2005). The ProM framework: A new era in process mining tool support. In G. Ciardo & P. Darondeau (Eds.), International conference on application and theory of petri nets (pp. 444–454). Berlin: Springer.Google Scholar
  27. 27.
    Kolfschoten, G. L., & De Vreede, G. J. (2014). A design approach for collaboration processes: A multimethod design science study in collaboration engineering. Journal of Management Information Systems, 26(1), 225–256.Google Scholar
  28. 28.
    De Moor, A. (2009). Collaboration patterns as building blocks for community informatics. In Proceedings of the 6th Prato community informatics research network Conference. Prato, Italy.Google Scholar
  29. 29.
    Georgakopoulos, D., Hornick, M., & Sheth, A. (1995). An overview of workflow management: From process modeling to workflow automation infrastructure. Distributed and Parallel Databases, 3(2), 119–153.Google Scholar
  30. 30.
    Briggs, R., de Vreede, G., Nunamaker, J. F., Jr, & Tobey, D. (2001). ThinkLets: Achieving predictable, repeatable patterns of group interaction with group support systems (GSS). In Proceedings of the 34th annual Hawaii international conference on system sciences (HICSS-34) (Vol. 1, p. 1057). IEEE Computer Society.Google Scholar
  31. 31.
    Faraj, S., Jarvenpaa, S. L., & Majchrzak, A. (2011). Knowledge collaboration in online communities. Organization Science, 22(5), 1224–1239.Google Scholar
  32. 32.
    Liu, J., & Ram, S. (2011). Who does what: Collaboration patterns in the Wikipedia and their impact on article quality. ACM Transactions on Management Information Systems, 2(2), 11.Google Scholar
  33. 33.
    Dustdar, S., & Hoffmann, T. (2007). Interaction pattern detection in process oriented information systems. Data & Knowledge Engineering, 62(1), 138–155.Google Scholar
  34. 34.
    Thiagarajan, R. K., Srivastava, A. K., Pujari, A. K., & Bulusu, V. K. (2002). BPML: A process modeling language for dynamic business models. In Fourth IEEE International workshop on advanced issues of e-commerce and web-based information systems, 2002 (pp. 222–224). IEEE.Google Scholar
  35. 35.
    Kumar, A., & Yao, W. (2012). Design and management of flexible process variants using templates and rules. Computers in Industry, 63(2), 112–130.Google Scholar
  36. 36.
    Kumar, A., Yao, W., & Chu, C.-H. (2013). Flexible process compliance with semantic constraints using mixed-integer programming. INFORMS Journal on Computing, 25(3), 543–559.Google Scholar
  37. 37.
    Kan, S. H. (2002). Metrics and models in software quality engineering. Reading, MA: Addison-Wesley Longman.Google Scholar
  38. 38.
    Van der Aalst, W. M., & Dustdar, S. (2012). Process mining put into context. IEEE Internet Computing, 16(1), 82–86.Google Scholar
  39. 39.
    Agrawal, R., & Ramakrishnan, S. (1995). Mining sequential patterns. In P. Yu & A. Chen (Eds.), Proceedings of the 11th international conference on data engineering (pp. 3–14). IEEE Computer Society Press.Google Scholar
  40. 40.
    Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies of open source software development: Apache and Mozilla. ACM Transactions on Software Engineering and Methodology, 11(3), 309–346.Google Scholar
  41. 41.
    Galbraith, J. R. (1977). Organization Design. Reading, MA: Addison Wesley.Google Scholar
  42. 42.
    Thompson, J. D. (1967). Organizations in action: Social science bases of administrative theory. Piscataway, NJ: Transaction.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shanshan Wang
    • 1
  • Kun Chen
    • 2
    Email author
  • Zhiyong Liu
    • 3
  • Ren-Yong Guo
    • 4
  • Jianshan Sun
    • 5
  • Qiongjie Dai
    • 6
  1. 1.College of Computer ScienceInner Mongolia UniversityHohhot, Inner MongoliaPeople’s Republic of China
  2. 2.Department of FinanceSouthern University of Science and TechnologyShenzhen, GuangdongPeople’s Republic of China
  3. 3.Faculty of Management and EconomicsDalian University of TechnologyDalian, LiaoningPeople’s Republic of China
  4. 4.School of Economics and ManagementBeihang UniversityBeijingPeople’s Republic of China
  5. 5.School of ManagementHefei University of TechnologyHefeiPeople’s Republic of China
  6. 6.College of ErdosInner Mongolia UniversityHohhot, Inner MongoliaPeople’s Republic of China

Personalised recommendations