Skip to main content
Log in

Utilization of the Theory of Small on Large Deformation for Studying Mechanosensitive Cellular Behaviors

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Recent studies suggest that cells routinely probe their mechanical environments and that this mechanosensitive behavior regulates some of their cellular activities. The finite elasticity theory of small-on-large deformation (SoL) has been shown to be effective in interpreting the mechanosensitive behavior of cells on a substrate that has been subjected to a prior large static stretch before the culturing of the cells. Small on large deformation is the superposition of a small deformation onto a prior large deformation that serves as the new reference configuration. This article aims to refine SoL theory to develop a theoretical framework for improved physical interpretation of mechanosensing. Given the initial large deformation in SoL, the stress generated by the small deformation is linearized, and the linearized elasticity tensor is taken to be a significant factor facilitating prediction of cellular behavior. The pre-stretch is shown to produce direction-based, effective elastic moduli for cellular mechanosensing. The utility of this SoL theory is illustrated by culturing of two different cell types grown on uniaxially pre-stretched surfaces that induce changes to the cell orientation and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baek, S., Srinivasa, A.R.: Thermomechanical constraints and constitutive formulations in thermoelasticity. Math. Probl. Eng. 2003(4), 153–171 (2003). https://doi.org/10.1155/S1024123X03212011

    Article  MATH  Google Scholar 

  2. Baek, S., Gleason, R.L., Rajagopal, K.R., Humphrey, J.D.: Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Comput. Methods Appl. Mech. Eng. 196, 3070–3078 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Biot, M.A.: Mechanics of Incremental Deformations. Wiley, New York (1964)

    Google Scholar 

  4. Bischofs, I.B., Schwarz, U.S.: Cell organization in soft media due to active mechanosensing. Proceedings of the National Academy of Science 100(16), 9274–9279 (2003)

    Article  ADS  Google Scholar 

  5. Borau, C., Kim, T., Bidone, T., García-Aznar, J.M., Kamm, R.D.: Dynamic mechanisms of cell rigidity sensing: insights from a computational model of actomyosin networks. PLoS ONE 7, e 49,174 (2012)

    Article  Google Scholar 

  6. Burger, E.H., Klein-Nulend, J.: Mechanotransduction in bone-role of the lacuno-canalicular network. FASEB J. 13, S101-12 (1999)

    Article  Google Scholar 

  7. Chen, B., Ji, B., Gao, H.: Modeling active mechanosensing in cell-matrix interactions. Annu. Rev. Biophys. 44, 1–32 (2015)

    Article  Google Scholar 

  8. De, R., Zemel, A., Safran, S.: Dynamics of cell orientation. Nat. Phys. 3, 655–659 (2007)

    Article  Google Scholar 

  9. Destrade, M., Martin, P.A., Ting, T.C.T.: The incompressible limit in linear anisotropic elasticity, with applications to surface waves and elastostatics. J. Mech. Phys. Solids 50, 1453–1468 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Duncan, R.L.: Mechanotransduction and the functional response of bone to mechanical strain. Calcif. Tissue Int. 57, 344–358 (1995)

    Article  Google Scholar 

  11. Eastwood, M., Mudera, V.C., McGrouther, D.A., Brown, R.A.: Effect of precise mechanical loading on fibroblast populated collagen lattices: morphological changes. Cell Motil. Cytoskelet. 40(1), 13–21 (1998)

    Article  Google Scholar 

  12. Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 26, 687–689 (2006)

    Google Scholar 

  13. Federico, S., Grillo, A., Imatani, S.: The linear elasticity tensor of incompressible materials. Math. Mech. Solids 20, 643–662 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Figueroa, C.A., Baek, S., Taylor, C.A., Humphrey, J.D.: A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput. Methods Appl. Mech. Eng. 198, 3583–3602 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Fouchard, J., Mitrossili, D., Asnacios, A.: Acto-myosin based response to stiffness and rigidity sensing. Cell Adhes. Migr. 5, 16–19 (2011)

    Article  Google Scholar 

  16. Goli-Malekabadi, Z., Tafazzoli-Shadpour, M., Rabbani, M., Janmaleki, M.: Effect of uniaxial stretch on morphology and cytoskeleton of human mesenchymal stem cells: static vs. dynamic loading. Biomed. Tech. Biomed. Eng. 56(5), 259–265 (2011). https://doi.org/10.1515/BMT.2011.109

    Article  Google Scholar 

  17. Green, A.E., Rivlin, R.S., Shield, R.T.: General theory of small elastic deformations superposed on finite elastic deformations. Proc. R. Soc. A 211, 128–154 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Hill, J.M., Arrigo, D.J.: On the general structure of small on large problems for elastic deformations of Varga materials I: plane strain deformations. J. Elast. 54, 193–211 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Holle, A., Engler, A.: More than a feeling: discovering, understanding, and influencing mechanosensing pathways. Curr. Opin. Biotechnol. 22, 648–654 (2011)

    Article  Google Scholar 

  20. Holzapfel, G.A.: Nonlinear Solid Mechanics. Wiley, New York (2000)

    MATH  Google Scholar 

  21. Ingber, D.E.: Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59, 575–599 (1997)

    Article  Google Scholar 

  22. Jaalouk, D., Lammerding, J.: Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10, 63–73 (2009)

    Article  Google Scholar 

  23. Kearney, E.M., Prendergast, P.J., Campbell, V.A.: Mechanisms of strain-mediated mesenchymal stem cell apoptosis. J. Biomech. Eng. 130(6), 061,004 (2008). https://doi.org/10.1115/1.2979870

    Article  Google Scholar 

  24. Lin, H.H., Lin, H.K., Lin, I.H., Chiou, Y.W., Chen, H.W., Liu, C.Y., Harn, H.I.C., Chiu, W.T., Wang, Y.K., Shen, M.R., Tang, M.J.: Mechanical phenotype of cancer cells: cell softening and loss of stiffness sensing. Oncotarget 6(25), 20,946–20,958 (2015). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673241/

    Google Scholar 

  25. Liu, C., Baek, S., Kim, J., Vasko, E., Pyne, R., Chan, C.: Effect of static pre-stretch induced surface anisotropy on orientation of mesenchymal stem cells. Cell. Mol. Bioeng. 7, 106–121 (2014)

    Article  Google Scholar 

  26. Liu, C., Pyne, R., Kim, J., Wright, N.T., Baek, S., Chan, C.: The impact of prestretch induced surface anisotropy on axon regeneration. Tissue Eng., Part C 22, 102–112 (2016)

    Article  Google Scholar 

  27. Mehrotra, S., Hunley, S., Pawelec, K., Zhang, L., Lee, I., Baek, S., Chan, C.: Cell adhesive behavior on thin polyelectrolyte multilayers: cells attempt to achieve homeostasis of its adhesion energy. Langmuir 26(15), 12,794–12,802 (2010)

    Article  Google Scholar 

  28. Montanaro, A.: On small-displacement waves in prestressed bodies with isotropic incremental elasticity tensor. Meccanica 32, 505–514 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Muliana, A., Rajagopal, K.R., Tscharnuter, D., Pinter, G.: A nonlinear viscoelastic constitutive model for polymeric solids based on multiple natural configuration theory. Int. J. Solids Struct. 100, 95–110 (2016)

    Article  Google Scholar 

  30. Murphy, J.G., Saccomandi, G.: Exploitation of the linear theory in the non-linear modelling of soft tissue. Math. Mech. Solids 20, 190–203 (2015)

    Article  MathSciNet  Google Scholar 

  31. Negahban, M., Wineman, A.S.: Material symmetry and the evolution of anisotropies in a simple material. 1. Change of reference configuration. Int. J. Non-Linear Mech. 24, 521–536 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2, 197–226 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  33. Parsons, J., Horwitz, A., Schwartz, M.: Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010)

    Article  Google Scholar 

  34. Pence, T.J., Gou, K.: On compressible versions of the incompressible neo-hookean material. Math. Mech. Solids 20, 157–182 (2015)

    Article  Google Scholar 

  35. Peyton, S., Ghajar, C., Khatiwala, C., Putnam, A.: The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function. Cell Biochem. Biophys. 47, 300–320 (2007)

    Article  Google Scholar 

  36. Ranade, S.S., Syeda, R., Patapoutian, A.: Mechanically activated ion channels. Neuron 87(6), 1162–1179 (2015)

    Article  Google Scholar 

  37. Ren, Y., Effler, J., Norstrom, M., Luo, T., Firtel, R., Iglesias, P., Rock, R., Robinson, D.: Mechanosensing through cooperative interactions between myosin II and the actin crosslinker cortexillin I. Curr. Biol. 19, 1421–1428 (2009)

    Article  Google Scholar 

  38. Rens, E.G., Merks, R.M.: Cell contractility facilitates alignment of cells and tissues to static uniaxial stretch. Biophys. J. 112(4), 755–766 (2017). https://doi.org/10.1016/j.bpj.2016.12.012

    Article  ADS  Google Scholar 

  39. Riehl, R.D., Park, J.H., Kwon, I.K., Lim, J.Y.: Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. Tissue Eng., Part B 18, 288–300 (2012)

    Article  Google Scholar 

  40. Rudnicki, M.S., Cirka, H.A., Aghvami, M., Sander, E.A., Wen, Q., Billiar, K.L.: Nonlinear strain stiffening is not sufficient to explain how far cells can feel on fibrous protein gels. Biophys. J. 105(1), 11–20 (2013). https://doi.org/10.1016/j.bpj.2013.05.032. http://www.sciencedirect.com/science/article/pii/S0006349513006152

    Article  ADS  Google Scholar 

  41. Sadd, M.H.: Elasticity: Theory, Applications, and Numerics. Academic Press, San Diego (2009)

    Google Scholar 

  42. Sen, S., Engler, A., Discher, D.: Matrix strains induced by cells: computing how far cells can feel. Cell. Mol. Bioeng. 2, 39–48 (2009)

    Article  Google Scholar 

  43. Tondon, A., Hsu, H.J., Kaunas, R.: Dependence of cyclic stretch-induced stress fiber reorientation on stretch waveform. J. Biomech. 45(5), 728–735 (2012). https://doi.org/10.1016/j.jbiomech.2011.11.012. http://www.sciencedirect.com/science/article/pii/S0021929011006944

    Article  Google Scholar 

  44. Toyjanova, J., Bar-Kochba, E., Lopez-Fegundo, C., Reichner, J., Hoffmann-Kim, D., Franck, C.: High resolution, large deformation 3D traction force microscopy. PLoS 9, e90,976 (2014)

    Article  Google Scholar 

  45. Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics. Handbuch der Physik, vol. 3. (1965)

    MATH  Google Scholar 

  46. Walcott, G., Sun, S.X.: A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells. Proc. Natl. Acad. Sci. 107, 7757–7762 (2010)

    Article  ADS  Google Scholar 

  47. Wang, N., Tytell, J., Ingber, D.: Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10, 75–82 (2009)

    Article  Google Scholar 

  48. Wineman, A., Rajagopal, K., Negahban, M.: Changes in material symmetry associated with deformation: uniaxial extension. Int. J. Eng. Sci. 26, 1307–1318 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zeinali-Davarani, S., Raguin, L., Baek, S.: An inverse optimization approach toward testing different hypotheses of vascular homeostasis using image-based models. Int. J. Struct. Chang. Solids 3(2), 33–45 (2011)

    Google Scholar 

  50. Zemel, A., Rehfeldt, F., Brown, A.E.X., Discher, D.E., Safran, S.A.: Optimal matrix rigidity for stress-fibre polarization in stem cells. Nat. Phys. 6, 468–473 (2010)

    Article  Google Scholar 

  51. Zhang, L., Chan, C.: Isolation and enrichment of rat mesenchymal stem cells (MSCs) and separation of single-colony derived MSCs. J. Vis. Exp. (2010). https://doi.org/10.3791/1852

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Mehdi Farsad for his contribution on the initial conceptual development of this study. We also thank Dr. Neil T. Wright for his contribution to the writing and interpretation of the analyses. This study was supported, in part, by the National Science Foundation (CBET-1148298, CBET-0941055, CBET 1802992 and CMMI-1150376) and the National Institutes of Health (R01HL115185, R01GM079688, R21CA176854, R01GM089866, R01EB014986). Kun Gou is grateful to the 2018 Texas A&M University-San Antonio Research Council Grant and the College of Arts and Sciences’ Summer Faculty Research Fellowship. The contents are solely the responsibility of the authors and do not necessarily represent the official views of NIH and NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungik Baek.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Symmetry Groups of a Pre-stressed Elastic Body for Uniaxial and Biaxial Stretches

Appendix: Symmetry Groups of a Pre-stressed Elastic Body for Uniaxial and Biaxial Stretches

This appendix illustrates the material symmetry groups for pre-stretches of uniaxial and biaxial deformation. Wineman et al. [48] showed that, based on the application of Noll’s theory, the new material symmetry group includes non-orthogonal transformations, which are unimodular, i.e., \(\operatorname{det} {\mathbf{Q}} = \pm 1\). Here, \(\mathbf{Q}\) is a member in the symmetry group. For a positive orthogonal group, we use the notation \(\mathbf{R}_{ \mathbf{n}}^{\theta }\) for the right-handed rotation through the angle \(\theta \), \(0\le \theta <2\pi \), about an axis in the direction of the unit vector \(\mathbf{n}\) (Sect. 33 of [45] by Truesdell and Noll).

From (6) and (7), the total Cauchy stress \(\mathbf{T}\) on the current configuration \(\kappa (\mathcal{B})\) is

$$ {\mathbf{T}}= \frac{1}{J^{\ast }J^{o}}{\mathbf{F}}^{\ast }{ \mathbf{F}} ^{o}{\mathbf{S}} {\mathbf{F}}^{oT}{ \mathbf{F}}^{\ast T}. $$
(53)

In the stress-free reference configuration \(\kappa _{R}(\beta )\), the body is assumed to be isotropic and a general form of the constitutive relation for an isotropic material (whose symmetry group is \(\mathcal{Q}=\{ \mathbf{R}_{\mathbf{i}}^{\theta _{1}}, \mathbf{R}_{ \mathbf{j}}^{\theta _{2}}, \mathbf{R}_{\mathbf{k}}^{\theta _{3}}\}\) for \(0\le \theta _{1}, \theta _{2},\theta _{3}<2\pi \) and reflective transformation groups, where \(\mathbf{i}\), \(\mathbf{j}\), and \(\mathbf{k}\) are orthonormal vectors) is [20]

$$ {\mathbf{S}}=\alpha _{1} {\mathbf{C}}^{-1}+\alpha _{2}{\mathbf{I}}+ \alpha _{3}{\mathbf{C}}, $$
(54)

where \(\mathbf{C}=\mathbf{F}^{T}{\mathbf{F}}\) is the right Cauchy-Green tensor, and

$$ \alpha _{1}=2I_{3}\frac{\partial W}{\partial I_{3}}, \qquad \alpha _{2}=2 \biggl(\frac{ \partial W}{\partial I_{1}}+I_{1} \frac{\partial W}{\partial I_{2}} \biggr), \qquad \alpha _{3}=-2\frac{\partial W}{\partial I_{2}}. $$
(55)

Here \(I_{1}\), \(I_{2}\), and \(I_{3}\) are the three principal invariants of \(\mathbf{C}\), respectively.

Let the new symmetry group in the pre-stressed configuration \(\kappa _{o}(\beta )\) be \(\mathcal{Q}^{\ast }\). For any \(\mathbf{Q}^{*} \in \mathcal{Q}^{\ast }\) operating on the pre-stressed configuration, the updated deformation gradient tensor from the reference configuration \(\kappa _{R}(\beta )\) to the current configuration \(\kappa (\beta )\) is thus

$$ {\mathbf{F}}'=\mathbf{F}^{\ast }{ \mathbf{Q}}^{\ast }{\mathbf{F}}^{o}. $$
(56)

By virtue of (6) and (56), the updated Cauchy stress tensor is

$$ {\mathbf{T}}'={J'}^{-1}{ \mathbf{F}}'{\mathbf{S}}'{\mathbf{F}'}^{T}= \frac{1}{J ^{\ast }J^{o}J_{Q}}{\mathbf{F}}^{\ast }{\mathbf{Q}}^{\ast }{ \mathbf{F}} ^{o}{\mathbf{S}}'{\mathbf{F}}^{oT}{ \mathbf{Q}}^{\ast T}{\mathbf{F}} ^{\ast T}, $$
(57)

where \(J'=\text{det}\mathbf{F}'\), \(J_{Q}=\operatorname{det} \mathbf{Q}^{*}=1\), and \(\mathbf{S}'\) is the updated second Piola-Kirchhoff stress tensor. Under operation of the symmetry group, the Cauchy stress tensor is unchanged, and thus

$$ {\mathbf{T}}'=\mathbf{T}. $$
(58)

From (53) and (57), Eq. (58) gives

$$ {\mathbf{S}}'=J_{Q}{\mathbf{F}}^{o-1}{ \mathbf{Q}}^{\ast -1}{\mathbf{F}} ^{o}{\mathbf{S}} { \mathbf{F}}^{oT}{\mathbf{Q}}^{\ast -T}{\mathbf{F}} ^{o-T}. $$
(59)

By the representation form of the Piola-Kirchhoff stress tensor, similar to (54), one has

$$ {\mathbf{S}}'=\alpha _{1}^{\prime } { \mathbf{C}}^{\prime \,-1}+\alpha _{2}^{\prime }{\mathbf{I}}+ \alpha _{3}^{\prime }{\mathbf{C}}' , $$
(60)

where

$$ \alpha _{1}'=2I_{3}' \frac{\partial W}{\partial I_{3}'}, \qquad \alpha _{2}'=2 \biggl( \frac{\partial W}{\partial I_{1}'}+I_{1}'\frac{\partial W}{ \partial I_{2}'} \biggr), \qquad \alpha _{3}'=-2\frac{\partial W}{\partial I _{2}'}, $$
(61)

and

$$\begin{aligned} I_{1}^{\prime } =& \operatorname{tr} \bigl( \mathbf{Q}^{\ast }{\mathbf{B}}^{o}{\mathbf{Q}} ^{\ast T}{ \mathbf{C}}^{\ast } \bigr), \end{aligned}$$
(62)
$$\begin{aligned} I_{2}^{\prime } =& \frac{1}{2} \bigl( \bigl(I_{1}^{\prime } \bigr)^{2}-\operatorname{tr} \bigl( \mathbf{Q} ^{\ast }{\mathbf{B}}^{o}{\mathbf{Q}}^{\ast T}{ \mathbf{C}}^{\ast } {\mathbf{Q}}^{\ast }{\mathbf{B}}^{o}{ \mathbf{Q}}^{\ast T}{\mathbf{C}} ^{\ast } \bigr) \bigr), \end{aligned}$$
(63)
$$\begin{aligned} I_{3}^{\prime } =& \operatorname{det} \bigl( \mathbf{F}^{oT}{\mathbf{Q}}^{\ast T}{\mathbf{C}} ^{\ast }{ \mathbf{Q}}^{\ast }{\mathbf{F}}^{o} \bigr)=I_{3}, \end{aligned}$$
(64)
$$\begin{aligned} \mathbf{C}' =&\mathbf{F}^{oT}{\mathbf{Q^{*}}}^{T}{ \mathbf{C}}^{\ast } {\mathbf{Q}}^{\ast }{\mathbf{F}}^{o}, \end{aligned}$$
(65)
$$\begin{aligned} \mathbf{C}^{\prime \,-1} =& \mathbf{F}^{o-1}{\mathbf{Q}}^{\ast -1}{ \mathbf{C}} ^{\ast -1}{\mathbf{Q}}^{\ast -T}{\mathbf{F}}^{o-T}. \end{aligned}$$
(66)

Here \(\mathbf{B}^{o}=\mathbf{F}^{o}{\mathbf{F}}^{oT}\). Then (60) becomes

$$ {\mathbf{S}}'=\alpha _{1}^{\prime }{ \mathbf{F}}^{o-1}{\mathbf{Q}}^{\ast -1} {\mathbf{C}}^{\ast -1}{ \mathbf{Q}}^{\ast -T}{\mathbf{F}}^{o-T}+ \alpha _{2}^{\prime }{ \mathbf{I}}+ \alpha _{3}^{\prime }{ \mathbf{F}}^{oT}{ \mathbf{Q}}^{ \ast T}{\mathbf{C}}^{\ast }{ \mathbf{Q}}^{\ast }{ \mathbf{F}}^{o}. $$
(67)

In order to satisfy the symmetry condition, the symmetry group should satisfy (59), and this condition can be written as

$$\begin{aligned} {\mathbf{S}}' =& J_{Q} \bigl(\alpha _{1}{ \mathbf{F}}^{o-1}{\mathbf{Q}} ^{\ast -1}{\mathbf{C}}^{\ast -1}{ \mathbf{Q}}^{\ast -T}{\mathbf{F}} ^{o-T}+\alpha _{2}{ \mathbf{F}}^{o-1}{\mathbf{Q}}^{\ast -1}{\mathbf{F}} ^{o}{ \mathbf{F}}^{oT}{\mathbf{Q}}^{\ast -T}{\mathbf{F}}^{o-T} \\ &{}+\alpha _{3} {\mathbf{F}}^{o-1}{\mathbf{Q}}^{\ast -1}{ \mathbf{F}} ^{o}{\mathbf{F}}^{oT}{\mathbf{C}}^{\ast }{ \mathbf{F}}^{o}{\mathbf{F}} ^{oT}{\mathbf{Q}}^{\ast -T}{ \mathbf{F}}^{o-T} \bigr). \end{aligned}$$
(68)

Substituting (67) into (68) results in

$$\begin{aligned} &\mathbf{F}^{o-1}{\mathbf{Q}}^{\ast -1} \bigl\{ \bigl(\alpha _{1}^{\prime }- {\alpha _{1}} {J_{Q}} \bigr)\mathbf{C}^{\ast -1}+ \alpha _{2}^{\prime }{ \mathbf{Q}} ^{\ast }{\mathbf{B}}^{o}{\mathbf{Q}}^{\ast T}-{ \alpha _{2}} {J_{Q}} {\mathbf{B}}^{o} \\ &\quad {}+ \alpha _{3}^{\prime }{\mathbf{Q}}^{\ast }{ \mathbf{B}}^{o}{\mathbf{Q}} ^{\ast T}{\mathbf{C}}^{\ast }{ \mathbf{Q}}^{\ast }{\mathbf{B}}^{o} {\mathbf{Q}}^{\ast T} -{ \alpha _{3}} {J_{Q}} {\mathbf{B}}^{o}{ \mathbf{C}} ^{\ast }{\mathbf{B}}^{o} \bigr\} {\mathbf{Q}}^{\ast -T}{ \mathbf{F}}^{o-T}= \mathbf{0}. \end{aligned}$$
(69)

Theorem 1

For an arbitrary\(\mathbf{C}^{\ast }\), (69) is true if

$$ {\mathbf{B}}^{o}=\mathbf{Q}^{\ast }{ \mathbf{B}}^{o}{\mathbf{Q}}^{ \ast T}. $$
(70)

Proof

Under (70), Eq. (69) gives

$$\begin{aligned} &{\mathbf{F}}^{o-1}{\mathbf{Q}}^{\ast -1} \bigl\{ \bigl(\alpha _{1}^{\prime }-{\alpha _{1}} {J_{Q}} \bigr)\mathbf{C}^{\ast -1}+ \bigl(\alpha _{2}^{\prime }-{\alpha _{2}} {J_{Q}} \bigr) \mathbf{B}^{o} \\ &\quad {}+ \bigl(\alpha _{3}^{\prime }-{\alpha _{3}} {J_{Q}} \bigr)\mathbf{B}^{o}{\mathbf{C}}^{ \ast }{ \mathbf{B}}^{o} \bigr\} {\mathbf{Q}}^{\ast -T}{ \mathbf{F}}^{o-T}=0. \end{aligned}$$
(71)

We show (71) is true.

Under (70) and (62), one has \(I_{1}^{\prime } = \operatorname{tr} (\mathbf{Q}^{\ast }{\mathbf{B}}^{o}{\mathbf{Q}}^{\ast T} {\mathbf{C}}^{\ast })=\text{tr}(\mathbf{B}^{o}{\mathbf{C}}^{\ast })=I _{1}\), and \(\operatorname{tr} (\mathbf{C'}^{2})=\operatorname{tr}(\mathbf{B}^{o}{\mathbf{C}} ^{*} {\mathbf{B}}^{o}{\mathbf{C}}^{*})\). It can be shown that \(\mathbf{C}^{2}=\mathbf{F}^{oT}{\mathbf{C}}^{*} {\mathbf{B}}^{o}{\mathbf{C}} ^{*}{\mathbf{F}}^{o}\). Thus \(\operatorname{tr} (\mathbf{C'}^{2})=\operatorname{tr} ( \mathbf{C}^{2})\). Under the formulation of \(I_{2}'\) given in (63), it therefore shows \(I_{2}'=I_{2}\).

Since \(I_{1}'=I_{1}\), \(I_{2}'=I_{2}\), and \(I_{3}'=I_{3}\) (given in (64)), it is obvious that \(\alpha _{1}'=\alpha _{1}\), \(\alpha _{2}'=\alpha _{2}\) and \(\alpha _{3}'=\alpha _{3}\) under \(J_{Q}=1\) according to (55) and (61). And then (71) holds. □

In summary, if a material symmetry transformation with \(\operatorname{det} {\mathbf{Q}}^{\ast }=1\) in a symmetry group \(\mathbf{Q}^{\ast }\in \mathcal{Q}^{\ast }\) satisfies the condition \(\mathbf{B}^{o}= \mathbf{Q}^{\ast }{\mathbf{B}}^{o}{\mathbf{Q}}^{\ast T}\), then the body, which was isotropic with respect to the reference configuration, has a new symmetry group \(\mathcal{Q}^{\ast }\) with respect to the pre-stressed configuration. Following Noll’s theorem [32], the new symmetry group has the relation \(\mathcal{Q}^{\ast }\subseteq \widehat{\mathcal{Q}}\), where

$$ \widehat{\mathcal{Q}}=\mathbf{F}^{o}\mathcal{Q} {\mathbf{F}}^{o-1}. $$
(72)

The following two examples illustrate this result.

Example 1

Let a pre-stressed configuration be the image of a mapping of a uniaxial stretch (or equi-biaxial stretch) from the reference configuration, which is isotropic and stress-free, as

$$ {\mathbf{F}}^{o}=\beta _{1} {\mathbf{n}}_{1} \otimes {\mathbf{n}}_{1} + \beta _{2} {\mathbf{I}}, $$
(73)

where \(\mathbf{n}_{1}\) is the unit vector in the stretched direction, and \(\beta _{1}\) and \(\beta _{2}\) are two stretch constants. Using (72), the transformations in the group \(\widehat{\mathcal{Q}}\) become

$$\begin{aligned} {\mathbf{{\widehat{Q}}}}_{1} =& \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{array}\displaystyle \right ] , \end{aligned}$$
(74)
$$\begin{aligned} \mathbf{{\widehat{Q}}}_{2} =& \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \cos \theta & \frac{\beta _{1}+\beta _{2}}{\beta _{2}}\sin \theta & 0 \\ -\frac{\beta _{2}}{\beta _{1}+\beta _{2}}\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array}\displaystyle \right ] , \end{aligned}$$
(75)
$$\begin{aligned} \mathbf{{\widehat{Q}}}_{3} =& \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \cos \theta & 0 & -\frac{\beta _{1}+\beta _{2}}{\beta _{2}}\sin \theta \\ 0 & 1 & 0 \\ \frac{\beta _{2}}{\beta _{1}+\beta _{2}}\sin \theta & 0 & \cos \theta \end{array}\displaystyle \right ] , \end{aligned}$$
(76)

where the basis of the tensors is \(\mathbf{n}_{i}\otimes {\mathbf{n}} _{j}\). The reflective material symmetry of the planes are

$$ {\mathbf{{\widehat{Q}}}}_{4} = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\displaystyle \right ] , \qquad \mathbf{{\widehat{Q}}}_{5} = \left [ \textstyle\begin{array}{c@{\quad}c@{\quad }c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\displaystyle \right ] , $$
(77)

where those tensors are evaluated in the reference system. Thus, the fundamental elements in the symmetry group \(\mathcal{Q}^{\ast }\) are \(\mathbf{{\widehat{Q}}}_{1}\), \(\mathbf{{\widehat{Q}}}_{2}\), \(\mathbf{{\widehat{Q}}}_{3}\), \(\mathbf{{\widehat{Q}}}_{4}\) and \(\mathbf{{\widehat{Q}}}_{5}\) for uniaxial stretch.

Example 2

Let a pre-stressed configuration be the image of a mapping of a biaxial stretch from the reference configuration, which is isotropic and stress-free, as

$$ {\mathbf{F}}^{o}=\beta _{1} {\mathbf{n}}_{1} \otimes {\mathbf{n}}_{1} + \beta _{2} {\mathbf{n}}_{2} \otimes {\mathbf{n}}_{2}+ \beta _{3} {\mathbf{n}} _{3}\otimes {\mathbf{n}}_{3}. $$
(78)

Thus using (72), the transformations in the group \(\widehat{\mathcal{Q}}\) are

$$\begin{aligned} {\widehat{\mathbf{Q}}}_{1} =& \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} 1 & 0 & 0 \\ 0 & \cos \theta &\frac{\beta _{2}}{\beta _{3}}\sin \theta \\ 0 & -\frac{\beta _{3}}{\beta _{2}}\sin \theta & \cos \theta \end{array}\displaystyle \right ] , \end{aligned}$$
(79)
$$\begin{aligned} {\widehat{\mathbf{Q}}}_{2} =& \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \cos \theta & \frac{\beta _{1}}{\beta _{2}}\sin \theta & 0 \\ -\frac{\beta _{2}}{\beta _{1}}\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array}\displaystyle \right ] , \end{aligned}$$
(80)
$$\begin{aligned} {\widehat{\mathbf{Q}}}_{3} =& \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \cos \theta & 0 & \frac{\beta _{1}}{\beta _{3}}\sin \theta \\ 0 & 1 & 0 \\ -\frac{\beta _{3}}{\beta _{1}}\sin \theta & 0 & \cos \theta \end{array}\displaystyle \right ] , \end{aligned}$$
(81)
$$\begin{aligned} {\widehat{\mathbf{Q}}}_{4} =& \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\displaystyle \right ] , \qquad {\widehat{\mathbf{Q}}}_{5}= \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\displaystyle \right ] , \end{aligned}$$
(82)

where the basis of the tensors is \(\mathbf{n}_{i}\otimes {\mathbf{n}} _{j}\). By adding the reflective symmetry group, the fundamental elements in the symmetry group \(\mathcal{Q}^{\ast }\) are \(\mathbf{{\widehat{Q}}}_{1}\), \(\mathbf{{\widehat{Q}}}_{2}\), \(\mathbf{{\widehat{Q}}}_{3}\), \(\mathbf{{\widehat{Q}}}_{4}\) and \(\mathbf{{\widehat{Q}}}_{5}\) for biaxial stretch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, S., Liu, C., Gou, K. et al. Utilization of the Theory of Small on Large Deformation for Studying Mechanosensitive Cellular Behaviors. J Elast 136, 137–157 (2019). https://doi.org/10.1007/s10659-018-9698-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-018-9698-x

Keywords

Mathematics Subject Classification

Navigation