Skip to main content
Log in

On the Generalization of Reissner Plate Theory to Laminated Plates, Part I: Theory

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This is the first part of a two-part paper presenting the generalization of Reissner thick plate theory (Reissner in J. Math. Phys. 23:184–191, 1944) to laminated plates and its relation with the Bending-Gradient theory (Lebée and Sab in Int. J. Solids Struct. 48(20):2878–2888, 2011 and in Int. J. Solids Struct. 48(20):2889–2901, 2011). The original thick and homogeneous plate theory derived by Reissner (J. Math. Phys. 23:184–191, 1944) is based on the derivation of a statically compatible stress field and the application of the principle of minimum of complementary energy. The static variables of this model are the bending moment and the shear force. In the present paper, the rigorous extension of this theory to laminated plates is presented and leads to a new plate theory called Generalized-Reissner theory which involves the bending moment, its first and second gradients as static variables. When the plate is homogeneous or functionally graded, the original theory from Reissner is retrieved. In the second paper (Lebée and Sab, 2015), the Bending-Gradient theory is obtained from the Generalized-Reissner theory and comparison with an exact solution for the cylindrical bending of laminated plates is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Allen, H.: Analysis and Design of Structural Sandwich Panels. Pergamon, Elmsford (1969)

    Google Scholar 

  2. Altenbach, H.: Theories for laminated and sandwich plates. Mech. Compos. Mater. 34(3), 243–252 (1998)

    Article  Google Scholar 

  3. Altenbach, H., Eremeyev, V.A.: Direct approach-based analysis of plates composed of functionally graded materials. Arch. Appl. Mech. 78(10), 775–794 (2008)

    Article  ADS  MATH  Google Scholar 

  4. Caillerie, D.: Thin elastic and periodic plates. Math. Methods Appl. Sci. 6(1), 159–191 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Carrera, E.: Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch. Comput. Methods Eng. 9(2), 87–140 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chiang, C.J., Winscom, C., Bull, S., Monkman, A.: Mechanical modeling of flexible OLED devices. Org. Electron. 10(7), 1268–1274 (2009)

    Article  Google Scholar 

  7. Ciarlet, P.G.: Mathematical Elasticity—Volume II: Theory of Plates. Elsevier, Amsterdam (1997)

    MATH  Google Scholar 

  8. Ciarlet, P.G., Destuynder, P.: Justification of the 2-dimensional linear plate model. J. Mech. 18(2), 315–344 (1979)

    MathSciNet  MATH  Google Scholar 

  9. Dauge, M., Gruais, I.: Developpement asymptotique d’ordre arbitraire pour une plaque elastique mince encastree. C. R. Acad. Sci., Sér. 1 Math. 321(3), 375–380 (1995)

    MathSciNet  Google Scholar 

  10. Dauge, M., Gruais, I., Rössle, A.: The influence of lateral boundary conditions on the asymptotics in thin elastic plates. SIAM J. Math. Anal. 31(2), 305–345 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eisenträger, J., Naumenko, K., Altenbach, H., Köppe, H.: Application of the first-order shear deformation theory to the analysis of laminated glasses and photovoltaic panels. Int. J. Mech. Sci. 96–97, 163–171 (2015)

    Article  Google Scholar 

  12. Eisenträger, J., Naumenko, K., Altenbach, H., Meenen, J.: A user-defined finite element for laminated glass panels and photovoltaic modules based on a layer-wise theory. Compos. Struct. 133, 265–277 (2015)

    Article  Google Scholar 

  13. Forest, S., Sab, K.: Stress gradient continuum theory. Mech. Res. Commun. 40, 16–25 (2012)

    Article  Google Scholar 

  14. Franzoni, L., Lebée, A., Lyon, F., Foret, G.: Influence of orientation and number of layers on the elastic response and failure modes on CLT floors: modeling and parameter studies. Eur. J. Wood Prod. (2016). doi:10.1007/s00107-016-1038-x

    Google Scholar 

  15. Hencky, H.: Über die Berücksichtigung der Schubverzerrung in ebenen Platten. Ing.-Arch. 16(1), 72–76 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  16. Koizumi, M.: FGM activities in Japan. Composites, Part B, Eng. 28(1–2), 1–4 (1997)

    Article  Google Scholar 

  17. Lebée, A., Sab, K.: A bending-gradient model for thick plates. Part I: theory. Int. J. Solids Struct. 48(20), 2878–2888 (2011)

    Article  Google Scholar 

  18. Lebée, A., Sab, K.: A bending-gradient model for thick plates. Part II: closed-form solutions for cylindrical bending of laminates. Int. J. Solids Struct. 48(20), 2889–2901 (2011)

    Article  Google Scholar 

  19. Lebée, A., Sab, K.: Homogenization of thick periodic plates: application of the Bending-Gradient plate theory to a folded core sandwich panel. Int. J. Solids Struct. 49(19–20), 2778–2792 (2012)

    Article  Google Scholar 

  20. Lebée, A., Sab, K.: Homogenization of a space frame as a thick plate: application of the Bending-Gradient theory to a beam lattice. Comput. Struct. 127, 88–101 (2013)

    Article  Google Scholar 

  21. Lebée, A., Sab, K.: Justification of the Bending-Gradient theory through asymptotic expansions. In: Altenbach, H., Forest, S., Krivtsov, A. (eds.) Gen. Contin. as Model. Mater, pp. 217–236. Springer, Berlin (2013)

    Google Scholar 

  22. Lebée, A., Sab, K.: On the generalization of Reissner plate theory to laminated plates, Part II: comparison with the Bending-Gradient theory (2015). doi:10.1007/s10659-016-9580-7

  23. March, H.W.: Bending of a centrally loaded rectangular strip of plywood. Physics (Coll. Park Md.) 7(1), 32 (1936)

    ADS  MATH  Google Scholar 

  24. Mindlin, R.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  25. Naumenko, K., Eremeyev, V.A.: A layer-wise theory for laminated glass and photovoltaic panels. Compos. Struct. 112(1), 283–291 (2014)

    Article  Google Scholar 

  26. Nguyen, T.K., Sab, K., Bonnet, G.: Shear correction factors for functionally graded plates. Mech. Adv. Mat. Struct. 14(8), 567–575 (2007)

    Article  Google Scholar 

  27. Nguyen, T.K., Sab, K., Bonnet, G.: First-order shear deformation plate models for functionally graded materials. Compos. Struct. 83(1), 25–36 (2008)

    Article  Google Scholar 

  28. Nguyen, T.k., Sab, K., Bonnet, G.: Green’s operator for a periodic medium with traction-free boundary conditions and computation of the effective properties of thin plates. Int. J. Solids Struct. 45(25–26), 6518–6534 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Noor, A.K., Malik, M.: An assessment of five modeling approaches for thermo-mechanical stress analysis of laminated composite panels. Comput. Mech. 25(1), 43–58 (2000)

    Article  MATH  Google Scholar 

  30. Reddy, J.N.: On refined computational models of composite laminates. Int. J. Numer. Methods Eng. 27(2), 361–382 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Reissner, E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184–191 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  32. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12(2), 69–77 (1945)

    MathSciNet  MATH  Google Scholar 

  33. Reissner, E.: On bending of elastic plates. Q. Appl. Math. 5(1), 55–68 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  34. Reissner, E.: On a variational theorem in elasticity. J. Math. Phys. 29(90) (1950)

  35. Reissner, E., Stavsky, Y.: Bending and stretching of certain types of heterogeneous aeolotropic elastic plates. J. Appl. Mech. 28, 402 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Schulze, S.H., Pander, M., Naumenko, K., Altenbach, H.: Analysis of laminated glass beams for photovoltaic applications. Int. J. Solids Struct. 49(15–16), 2027–2036 (2012)

    Article  Google Scholar 

  37. Weps, M., Naumenko, K., Altenbach, H.: Unsymmetric three-layer laminate with soft core for photovoltaic modules. Compos. Struct. 105, 332–339 (2013)

    Article  Google Scholar 

  38. Whitney, J.M., Leissa, A.W.: Analysis of heterogeneous anisotropic plates. J. Appl. Mech. 36(2), 261 (1969)

    Article  ADS  MATH  Google Scholar 

  39. Yim, M.J., Paik, K.W.: Recent advances on anisotropic conductive adhesives (ACAs) for flat panel displays and semiconductor packaging applications. Int. J. Adhes. Adhes. 26(5), 304–313 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Lebée.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebée, A., Sab, K. On the Generalization of Reissner Plate Theory to Laminated Plates, Part I: Theory. J Elast 126, 39–66 (2017). https://doi.org/10.1007/s10659-016-9581-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-016-9581-6

Keywords

Mathematics Subject Classification (2010)

Navigation