Skip to main content
Log in

On a Consistent Dynamic Finite-Strain Plate Theory and Its Linearization

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This paper develops a dynamic finite-strain plate theory consistent with three-dimensional Hamilton’s principle under general loadings with a fourth-order error. Starting from the three-dimensional field equations for a compressible hyperelastic material and by a series expansion about the bottom surface, we deduce a vector dynamic plate equation with three unknowns, which exhibits the local momentum-balance structure. Associated weak formulations are considered, in connection with various boundary conditions. Then, by linearization, we provide a novel linear plate theory for orthotropic materials, which takes into account both stretching and bending effects. For isotropic materials, it is further modified to a refined linear plate theory, leading to higher-order results under certain circumstances. To verify the present plate theory, an exhaustive study of the free vibration and static bending problems is carried out. Comparing with the available exact three-dimensional solutions for these problems, it is shown that the plate theory indeed provides correct asymptotic results for displacements and stresses distributions. The advantages of this linear plate theory include (i) its simplicity (as simple as the Kirchhoff-Love theory), (ii) high accuracy for frequencies and deflections, as well as capability of capturing the distributions of all concerned quantities, and (iii) applicability for general loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The general formula is \(\bar{\mathbf{x}}=\sum_{k=0}^{n} \frac{2^{k}}{(k+1)!} h^{k} \mathbf {x}^{(k)} + O(h^{n+1})\), and we will use the high-order terms in Sect. 6.2 to calculate the high-order results for frequency.

  2. There is no need to distinguish the moduli tensor associated with different pairs of conjugate stress-strain variables for small-strain cases.

  3. For the foundation case, we should substitute \(\mathbf{q}^{-}=-k_{s} x_{3}^{(0)} \mathbf{k}\) or \(q_{j}^{-}=-k_{s} x_{3}^{(0)} \delta_{3j}\).

  4. Symmetric (antisymmetric) means in-plane displacements are symmetric (antisymmetric) about mid-plane, and it is reversed for the transverse displacement.

References

  1. Altenbach, H., Maugin, G.A., Erofeev, V.: Mechanics of Generalized Continua. Advanced Structured Materials, vol. 7. Springer, Berlin (2011)

    MATH  Google Scholar 

  2. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: A short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)

    Article  ADS  MATH  Google Scholar 

  3. Ciarlet, P.G.: A justification of the von Kármán equations. Arch. Ration. Mech. Anal. 73(4), 349–389 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ciarlet, P.G.: Mathematical Elasticity. Volume II: Theory of Plates. Studies in Mathematics and its Applications, vol. 27. North-Holland, Amsterdam (1997)

    MATH  Google Scholar 

  5. Ciarlet, P.G., Destuynder, P.: A justification of a nonlinear model in plate theory. Comput. Methods Appl. Mech. Eng. 17, 227–258 (1979)

    Article  ADS  MATH  Google Scholar 

  6. Ciarlet, P.G., Destuynder, P.: Justification of the 2-dimensional linear plate model. J. Méc. 18(2), 315–344 (1979)

    MathSciNet  MATH  Google Scholar 

  7. Dai, H.H., Song, Z.: On a consistent finite-strain plate theory based on three-dimensional energy principle. Proc. R. Soc. Lond. A 470(2171), 20140, 494 (2014)

    Article  Google Scholar 

  8. Demasi, L.: Three-dimensional closed form solutions and exact thin plate theories for isotropic plates. Compos. Struct. 80(2), 183–195 (2007)

    Article  Google Scholar 

  9. Deresiewicz, H., Bieniek, M., DiMaggio, F.: The Collected Papers of Raymond D. Mindlin. Volumes I and II (1989)

  10. Erbay, H.: On the asymptotic membrane theory of thin hyperelastic plates. Int. J. Eng. Sci. 35(2), 151–170 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461–1506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goldenveizer, A., Kaplunov, J., Nolde, E.: On Timoshenko-Reissner type theories of plates and shells. Int. J. Solids Struct. 30(5), 675–694 (1993)

    Article  MATH  Google Scholar 

  14. Kienzler, R.: On consistent plate theories. Arch. Appl. Mech. 72(4–5), 229–247 (2002)

    Article  ADS  MATH  Google Scholar 

  15. Kienzler, R., Schneider, P.: Consistent theories of isotropic and anisotropic plates. J. Theor. Appl. Mech. 50, 755–768 (2012)

    Google Scholar 

  16. Kirchhoff, G.: Über das gleichgewicht und die bewegung einer elastischen scheibe. J. Reine Angew. Math. 40, 51–88 (1850)

    Article  MathSciNet  Google Scholar 

  17. Le Dret, H., Raoult, A.: The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74, 549–578 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Love, A.E.H.: The small free vibrations and deformation of a thin elastic shell. Philos. Trans. R. Soc. Lond. A 491–546 (1888)

  19. Mauritsson, K., Folkow, P.D., Boström, A.: Dynamic equations for a fully anisotropic elastic plate. J. Sound Vib. 330(11), 2640–2654 (2011)

    Article  ADS  Google Scholar 

  20. Meroueh, K.: On a formulation of a nonlinear theory of plates and shells with applications. Comput. Struct. 24(5), 691–705 (1986)

    Article  MATH  Google Scholar 

  21. Miara, B., Podio-Guidugli, P.: Deduction by scaling: A unified approach to classic plate and rod theories. Asymptot. Anal. 51(2), 113–131 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Millet, O., Hamdouni, A., Cimetière, A.: A classification of thin plate models by asymptotic expansion of non-linear three-dimensional equilibrium equations. Int. J. Non-Linear Mech. 36(1), 165–186 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mindlin, R.D.: Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  24. Mindlin, R.D., Yang, J.: An Introduction to the Mathematical Theory of Vibrations of Elastic Plates. World Scientific, Singapore (2006)

    Book  Google Scholar 

  25. Naghdi, P.: The theory of plates and shells. Handb. Phys. VIa/2, 425–640 (1972)

    MathSciNet  Google Scholar 

  26. Ogden, R.: Non-Linear Elastic Deformations. Ellis Horwood, New York (1984)

    MATH  Google Scholar 

  27. Paroni, R.: The equations of motion of a plate with residual stress. Meccanica 41(1), 1–21 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reddy, J.: A refined nonlinear theory of plates with transverse shear deformation. Int. J. Solids Struct. 20(9), 881–896 (1984)

    Article  MATH  Google Scholar 

  29. Reddy, J.: Theory and Analysis of Elastic Plates and Shells. CRC Press/Taylor & Francis, Boca Raton/London (2007)

    Google Scholar 

  30. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12, 69–77 (1945)

    MathSciNet  MATH  Google Scholar 

  31. Reissner, E.: Reflections on the theory of elastic plates. Appl. Mech. Rev. 38(11), 1453–1464 (1985)

    Article  ADS  Google Scholar 

  32. Srinivas, S., Rao, A.K., Rao, C.: Flexure of simply supported thick homogeneous and laminated rectangular plates. J. Appl. Math. Mech. 49(8), 449–458 (1969)

    MATH  Google Scholar 

  33. Srinivas, S., Rao, C.J., Rao, A.: An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates. J. Sound Vib. 12(2), 187–199 (1970)

    Article  ADS  MATH  Google Scholar 

  34. Steigmann, D.J.: Thin-plate theory for large elastic deformations. Int. J. Non-Linear Mech. 42(2), 233–240 (2007)

    Article  ADS  MATH  Google Scholar 

  35. Steigmann, D.J.: Koiter’s shell theory from the perspective of three-dimensional nonlinear elasticity. J. Elast. 111(1), 91–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Steigmann, D.J.: Mechanics of materially uniform thin films. Math. Mech. Solids 20(3), 309–326 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Timoshenko, S., Woinowsky-Krieger, S., Woinowsky-Krieger, S.: Theory of Plates and Shells, vol. 2. McGraw-Hill, New York (1959)

    MATH  Google Scholar 

  38. Ventsel, E., Krauthammer, T.: Thin Plates and Shells: Theory, Analysis, and Applications. CRC Press, Boca Raton (2001)

    Book  Google Scholar 

  39. Von Karman, T.: Festigkeitsprobleme im Maschinenbau, vol. 4 (1910)

    MATH  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by a GRF grant (Project No.: CityU 11303015) from the Research Grants Council of Hong Kong SAR, China and a grant from the National Nature Science Foundation of China (Project No.: 11572272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Hui Dai.

Appendices

Appendix A: Recursion Relations and Moduli Tensors in the Linear Case

The component forms of (42) and (41)1 read

$$ \begin{aligned} {x}_{i}^{(1)}&= \tilde{B}_{ij} \bigl( - {q}_{j}^{-} - { \mathscr{A}}_{03j\alpha k}^{1} {x}_{k,\alpha}^{(0)} + { \mathscr{A}}_{03jkk}^{1} \bigr) \\ &= - \tilde{B}_{ij} {q}_{j}^{-} - { \mathscr{A}}_{0\alpha k 3j}^{1} \tilde{B}_{ji} {x}_{k,\alpha}^{(0)} + {\mathscr{A}}_{0kk3j}^{1} \tilde{B}_{ji} \\ &= - \tilde{B}_{ij} {q}_{j}^{-} + C_{\alpha k i}^{(0)} {x}_{k,\alpha}^{(0)} - C_{k k i}^{(0)}, \\ S_{m i}^{(0)} &= {\mathscr{A}}_{0m i\beta j}^{1} {x}_{j,\beta}^{(0)} + {\mathscr{A}}_{0m i3 j}^{1} {x}_{j}^{(1)} - {\mathscr{A}}_{0m ikl}^{1} \delta_{kl} \\ &= {\mathscr{A}}_{0m i\beta j}^{1} {x}_{j,\beta}^{(0)} + {\mathscr{A}}_{0m i3 j}^{1} \bigl[- \tilde{B}_{jk} {q}_{k}^{-} + C_{\alpha k j}^{(0)} {x}_{k,\alpha}^{(0)} - C_{k k j}^{(0)} \bigr] - { \mathscr{A}}_{0m ikk}^{1} \\ &= D_{m i \alpha k}^{(0)} {x}_{k,\alpha}^{(0)} + C_{m i k}^{(0)} {q}_{k}^{-} -D_{m i kk}^{(0)}, \end{aligned} $$
(110)

where

$$ \begin{aligned} (\tilde{B}_{ij}) =& \bigl({ \mathscr{A}}_{03 i3 j}^{1}\bigr)^{-1}, \qquad C_{m i k}^{(0)}=- {\mathscr{A}}_{0m i3 j}^{1} \tilde{B}_{jk}, \\ D_{m i j k}^{(0)}=& {\mathscr{A}}_{0 m ij k}^{1}+ {\mathscr{A}}_{0mi 3 n}^{1} C_{jk n}^{(0)}= { \mathscr{A}}_{0 m ij k}^{1} - {\mathscr{A}}_{0mi 3 n}^{1} {\mathscr{A}}_{0jk 3 p}^{1} \tilde{B}_{pn}. \end{aligned} $$
(111)

It is easy to verify the symmetry and the special values

$$ \begin{aligned} C_{m i k}^{(0)} &= C_{imk}^{(0)}, \qquad C_{3 i k}^{(0)}=-\delta_{ik} , \\ D_{m i j k}^{(0)} &= D_{im j k}^{(0)} =D_{m i kj}^{(0)} =D_{j k m i}^{(0)}, \qquad D_{3 i j k}^{(0)} = 0, \end{aligned} $$
(112)

which imply that \(S_{m i}^{(0)}\) in (110) does not involve \({x}_{3}^{(0)}\) and \(S_{m 3}^{(0)}\) only involves \(q_{k}^{-}\). Furthermore, for isotropic or orthotropic materials, \(\tilde{\mathbb{B}}\) is always a diagonal matrix, and as a result

$$ \begin{aligned} {\mathscr{A}}_{0\alpha\beta\gamma3}^{1} =0, \qquad C_{\alpha\beta \gamma}^{(0)} =0, \qquad C_{\alpha33}^{(0)} =0, \qquad C_{ 33\alpha}^{(0)} =0, \end{aligned} $$
(113)

which imply that \({x}_{\gamma}^{(1)}\) in (110) only involves derivatives of \({x}_{3}^{(0)}\), while \({x}_{3}^{(1)}\) only involves the derivatives of \({x}_{\alpha}^{(0)}\).

Now we analyze

$$\begin{aligned} {x}_{i}^{(2)} =& \tilde{B}_{ij}\rho \ddot{x}_{j}^{(0)} - \tilde{B}_{ij} \bigl( {\mathscr{A}}_{03j\alpha k}^{1} {x}_{k,\alpha}^{(1)} + S_{\alpha j,\alpha }^{(0)} \bigr) \\ = &\tilde{B}_{ij}\rho \ddot{x}_{j}^{(0)} + C_{\alpha k i}^{(0)} {x}_{k,\alpha}^{(1)} - \tilde{B}_{ij} S_{\alpha j,\alpha}^{(0)}. \end{aligned}$$
(114)

For isotropic or orthotropic cases, \({x}_{\gamma}^{(2)}\) only involves \(\ddot{x}_{\alpha}^{(0)}\) and spatial derivatives of \({x}_{3}^{(1)}\) and \(S_{\alpha\beta}^{(0)}\), and thus derivatives of \({x}_{\alpha}^{(0)}\); on the other hand, \({x}_{3}^{(2)}\) only involves \(\ddot{x}_{3}^{(0)}\) and spatial derivatives of \({x}_{\gamma}^{(1)}\) (\(S_{\alpha3}^{(0)}\) becomes \(-q_{\alpha}^{-}\)), and thus derivatives of \({x}_{3}^{(0)}\). Then, we can calculate

$$\begin{aligned} S_{m i}^{(1)} =& {\mathscr{A}}_{0m i\alpha k}^{1} {x}_{k,\alpha}^{(1)} + { \mathscr{A}}_{0m i3 j}^{1} {x}_{j}^{(2)} \\ =& {\mathscr{A}}_{0m i\alpha k}^{1} {x}_{k,\alpha}^{(1)} + {\mathscr{A}}_{0m i3 j}^{1} \bigl( \tilde{B}_{j k} \rho \ddot{x}_{k}^{(0)} + C_{\alpha k j}^{(0)} {x}_{k,\alpha}^{(1)} - \tilde{B}_{jk} S_{\alpha k,\alpha}^{(0)} \bigr) \\ =&- C_{m i k}^{(0)} \rho\ddot{x}_{k}^{(0)} + D_{m i \alpha k}^{(0)} {x}_{k,\alpha}^{(1)} + C_{m i k}^{(0)} S_{\alpha k,\alpha}^{(0)}. \end{aligned}$$
(115)

For isotropic or orthotropic cases, \(S_{\alpha\beta}^{(1)}\) only involves \(\ddot{x}_{3}^{(0)}\) and spatial derivatives of \({x}_{\gamma}^{(1)}\), thus only derivatives of \({x}_{3}^{(0)}\); while \(S_{\alpha 3}^{(1)}\) only involves \(\ddot{x}_{\gamma}^{(0)}\) and spatial derivatives of \({S}_{\beta\gamma}^{(0)}\), thus only derivatives of \({x}_{\gamma}^{(0)}\); and \(S_{3 3}^{(1)}\) only involves \(\ddot{x}_{3}^{(0)}\).

We might also express \({x}_{i}^{(2)}\) and \(S_{m i}^{(1)}\) in terms of \({x}^{(0)}\) by combining the above recursion relations

$$\begin{aligned} {x}_{i}^{(2)} = & \tilde{B}_{ij}\rho \ddot{x}_{j}^{(0)} + C_{\alpha k i}^{(0)} {x}_{k,\alpha}^{(1)} - \tilde{B}_{ij} S_{\alpha j,\alpha}^{(0)} \\ =&\tilde{B}_{ij}\rho \ddot{x}_{j}^{(0)} + C_{\alpha k i}^{(0)} \bigl( - \tilde{B}_{kn} {q}_{n,\alpha}^{-} + C_{\beta n k}^{(0)} {x}_{n,\alpha\beta}^{(0)} \bigr) \\ &{}- \tilde{B}_{ij} \bigl( D_{\alpha j \beta n}^{(0)} {x}_{n,\alpha\beta }^{(0)} + C_{\alpha j n}^{(0)} {q}_{n,\alpha}^{-} \bigr) \\ =&\tilde{B}_{ij}\rho \ddot{x}_{j}^{(0)} + C_{i\alpha n} {q}_{n,\alpha}^{-} + C^{(1)}_{\alpha i \beta n} {x}_{n,\alpha\beta}^{(0)}, \end{aligned}$$
(116)

where (changing \(\alpha\rightarrow m\), \(\beta\rightarrow k\))

$$ \begin{aligned} C_{im n}&= - C_{m k i}^{(0)} \tilde{B}_{kn} - C_{m j n}^{(0)} \tilde {B}_{ij}, \\ C^{(1)}_{m i kn}& = C_{m j i}^{(0)} C_{k n j}^{(0)} -\tilde{B}_{ij} D_{m j k n}^{(0)}, \end{aligned} $$
(117)

with the properties

$$ \begin{aligned} C_{im n}= C_{nmi},\qquad C_{i3 n}= 2 \tilde{B}_{in},\qquad C^{(1)}_{m i k n} = C^{(1)}_{m i n k}. \end{aligned} $$
(118)

And

$$\begin{aligned} S_{m i}^{(1)} =& -C_{m i k}^{(0)} \rho\ddot{x}_{k}^{(0)} + D_{m i \alpha k}^{(0)} {x}_{k,\alpha}^{(1)} + C_{m i j}^{(0)} S_{\alpha j,\alpha}^{(0)} \\ =&- C_{m i k}^{(0)} \rho\ddot{x}_{k}^{(0)} + D_{\alpha k m i }^{(0)} \bigl( - \tilde{B}_{kn}{q}_{n,\alpha}^{-} + C_{\beta n k}^{(0)}{x}_{n,\alpha\beta}^{(0)} \bigr) \\ &{}+ C_{m i j}^{(0)} \bigl( D_{\alpha j \beta n}^{(0)}{x}_{n,\alpha\beta}^{(0)} + C_{\alpha j n}^{(0)}{q}_{n,\alpha}^{-} \bigr) \\ =& - C_{m i k}^{(0)} \rho\ddot{x}_{k}^{(0)} + C_{\alpha n m i}^{(1)} {q}_{n,\alpha}^{-} + D_{m i \alpha\beta n }^{(1)} {x}_{n,\alpha\beta}^{(0)}, \end{aligned}$$
(119)

where (changing \(\alpha\rightarrow p\), \(\beta\rightarrow j\))

$$ \begin{aligned} D_{m i p j n }^{(1)}= D_{p k m i}^{(0)} C_{j n k}^{(0)} + D_{p k j n}^{(0)} C_{mi k }^{(0)}, \end{aligned} $$
(120)

with symmetry properties

$$ \begin{aligned} D_{m i p j n }^{(1)}= D_{im p j n }^{(1)} =D_{m i p n j }^{(1)} = D_{j n p m i }^{(1)}. \end{aligned} $$
(121)

Appendix B: Recursion Relations, Stress Coefficients and Functions for Isotropic Case

The high-order coefficients of current position \(\mathbf{x}\) are

$$ \begin{aligned} &x_{1}^{(1)}=\hat{u}^{(1)}= -w_{X} - \frac{2 (\nu+1) }{E} q_{1}^{-}, \\ &x_{2}^{(1)}=\hat{v}^{(1)}= -w_{Y} - \frac{2 (\nu+1)}{E} q_{2}^{-}, \\ &x_{3}^{(1)}=1+ \hat{w}^{(1)} = 1+ \frac{\nu}{\nu-1} (u_{X} +v_{Y}) - \frac{ (2 \nu^{2}+\nu-1 )}{E (\nu-1)} q_{3}^{-}, \end{aligned} $$
(122)

and

$$ \begin{aligned} & x_{1}^{(2)}= \hat{u}^{(2)}= - \Delta u +\frac{1}{(\nu-1)} (u_{X} +v_{Y})_{X} +\frac{2(\nu+ 1)}{E} \rho\ddot{u} - \frac{1 + \nu}{E (\nu-1)} q_{3X}^{-}, \\ &x_{2}^{(2)}=\hat{v}^{(2)}= - \Delta v + \frac{1}{(\nu-1)} (u_{X} +v_{Y})_{Y} + \frac{2(\nu+ 1)}{E} \rho\ddot{v} - \frac{1 + \nu}{E (\nu-1)} q_{3Y}^{-}, \\ &x_{3}^{(2)}=\hat{w}^{(2)} = -\frac{\nu}{\nu-1} \Delta w + \frac{ (2 \nu^{2}+\nu-1 )}{E (\nu-1)} \rho\ddot{w} -\frac{1+ \nu}{E (\nu -1)} \bigl(q_{1X}^{-} + q_{2Y}^{-}\bigr). \end{aligned} $$
(123)

The subsequent coefficients of \(\mathbf{x}\) are given by (for \(i\ge1\))

$$ \begin{aligned} & x_{1}^{(i+2)}= \frac{2 (\nu+1) }{E} \rho\ddot {x}_{1}^{(i)}-x_{1YY}^{(i)} + \frac{1}{2 \nu-1}\bigl[x_{3X}^{(i+1)} +x_{2XY}^{(i)} \bigr]-\frac{2 (\nu-1)}{2 \nu-1} x_{1XX}^{(i)}, \\ & x_{2}^{(i+2)}= \frac{2 (\nu+1) }{E} \rho\ddot {x}_{2}^{(i)}-x_{2XX}^{(i)} + \frac{1}{2 \nu-1}\bigl[x_{3Y}^{(i+1)} +x_{1XY}^{(i)} \bigr]-\frac{2 (\nu-1)}{2 \nu-1} x_{2YY}^{(i)}, \\ & x_{3}^{(i+2)}= \frac{ (2 \nu^{2}+\nu-1 ) }{E (\nu -1)} \rho \ddot{x}_{3}^{(i)} + \frac{(1-2 \nu) }{2 (\nu-1)} \Delta x_{3}^{(i)} +\frac{1}{2 (\nu -1)} \bigl[x_{1X}^{(i+1)} + x_{2Y}^{(i+1)}\bigr]. \end{aligned} $$
(124)

The stress coefficients are given by

$$ \begin{aligned} &S_{11}^{(0)} = \frac{E }{1-\nu^{2}} (\nu v_{Y}+u_{X} ) + \frac{\nu }{\nu-1} q_{3}^{-}, \\ &S_{12}^{(0)} = \frac{E (u_{Y}+v_{X} )}{2 (\nu+1)}, \\ &S_{22}^{(0)} = \frac{E }{1- \nu^{2}} (v_{Y}+\nu u_{X} ) + \frac{\nu}{\nu-1} q_{3}^{-}, \\ &S_{13}^{(0)} = -q_{1}^{-},\qquad S_{23}^{(0)} = -q_{2}^{-},\qquad S_{33}^{(0)} = -q_{3}^{-}, \end{aligned} $$
(125)

and

$$ \begin{aligned} &S_{11}^{(1)} = \frac{E}{\nu^{2}-1}(\nu w_{YY} + w_{XX}) - \frac {\nu}{\nu -1} \rho\ddot{w} + \frac{1}{\nu-1} \bigl[(2 - \nu)q_{1X}^{-} + \nu q_{2Y}^{-} \bigr], \\ &S_{12}^{(1)} = -\frac{E w_{XY}}{\nu+1} - \bigl(q_{1Y}^{-} + q_{2X}^{-}\bigr), \\ &S_{22}^{(1)} = \frac{E}{\nu^{2}-1}(\nu w_{XX} + w_{YY}) - \frac {\nu}{\nu -1} \rho\ddot{w} + \frac{1}{\nu-1} \bigl[(2 -\nu)q_{2Y}^{-} + \nu q_{1X}^{-} \bigr], \\ &S_{13}^{(1)} = \frac{E}{2 (\nu^{2}-1 )} \bigl[(1-\nu) \Delta u+ (1+\nu ) (u_{X}+v_{Y})_{X} \bigr] + \rho \ddot{u} - \frac{\nu}{\nu-1} q_{3X}^{-}, \\ &S_{23}^{(1)} = \frac{E}{2 (\nu^{2}-1 )} \bigl[(1-\nu) \Delta v+ (1+\nu ) (u_{X}+v_{Y})_{Y} \bigr] + \rho \ddot{v} - \frac{\nu}{\nu-1} q_{3Y}^{-}, \\ &S_{33}^{(1)} =\rho\ddot{w} +q_{1X}^{-} + q_{2Y}^{-}. \end{aligned} $$
(126)

The components of \(\mathbb{S}^{(i)}\) (\(i\ge2\)) can be obtained by using (39) and the above formulas of \(\mathbf{x}^{(k)}\) together with the explicit expressions \(\mathscr{A}_{0}^{1}\) for isotropic case.

The functions \(f_{i}(\mathbf{q}^{-})\) in the isotropic linear system (62) are given by

$$\begin{aligned} f_{1} =& \frac{\nu q_{3X}^{-}}{\nu-1} - \frac{ h}{\nu-1} \bigl[(\nu-1) \Delta q_{1}^{-}- q_{\phi X}^{-} \bigr] + \frac{2 h (\nu+1) \rho \ddot{q}_{1}^{-} }{E} , \\ f_{2} =& \frac{\nu q_{3Y}^{-}}{\nu-1} - \frac{ h}{\nu-1} \bigl[(\nu-1) \Delta q_{2}^{-}- q_{\phi Y}^{-} \bigr] + \frac{2 h (\nu+1) \rho \ddot{q}_{2}^{-}}{E}, \\ f_{3} =& -q_{\phi}^{-} - \frac{\nu h}{\nu-1} \Delta q_{3}^{-} +\frac{2 (\nu-2) h^{2}}{3 (\nu-1)} \Delta q_{\phi}^{-} +\frac{h (\nu+1) \rho ((6 \nu-3) \ddot {q}_{3}^{-} -4 h (\nu-1) \ddot{q}_{\phi}^{-} )}{3 E (\nu-1)}, \end{aligned}$$
(127)

where \(q_{\phi}^{-}\) are given in (64). And the functions in (65) are given by

$$ \begin{aligned} f_{\phi}\bigl(\mathbf{q}^{-} \bigr) &= f_{1X}+ f_{2Y} = \frac{\nu}{\nu-1} \Delta q_{3}^{-} - \frac{ (\nu-2) h}{\nu-1} \Delta q_{\phi}^{-} + \frac{2 h (\nu+1) \rho \ddot{q}_{\phi}^{-} }{E}, \\ f_{\varphi}\bigl(\mathbf{q}^{-}\bigr) &= f_{2X}- f_{1Y} =-h \Delta q_{\varphi}^{-} + \frac{2 h (\nu+1) \rho \ddot{q}_{\varphi}^{-} }{E}. \end{aligned} $$
(128)

The functions \(F_{i}(\mathbf{q}^{\pm})\) in the refined dynamic system (81) are given by

$$\begin{aligned} F_{1} = & \bar{q}_{1} + \frac{q_{3X}^{-}-(\nu-1) q_{3X}^{+} }{\nu-1} + \biggl[\frac {2 (\nu+1) \rho (2 \ddot{q}_{1}^{-}- \ddot{q}_{1}^{+} )}{3 E}+\frac{(4 \nu-1) q_{\phi X}^{-} }{3 (\nu-1)} - \frac{2}{3} q_{\phi X}^{+} \\ &{} + \frac{1}{3} \Delta \bigl( q_{1}^{+} -2 q_{1}^{-} \bigr)\biggr]h + \biggl(\frac{2 (-6 \nu^{3}+5 \nu^{2}+7 \nu-4 ) \rho \ddot{q}_{3X}^{-} }{3 E (\nu-1)^{2}} + \frac{2}{3} \Delta{q}_{3X}^{-} \biggr)h^{2} \\ &{} + \biggl(-\frac{8 (\nu+1)^{2} \rho^{2} \ddddot{q}_{1}^{-} }{3 E^{2}} - \frac { (\nu^{2}-\nu-2 ) \rho\ddot{q}_{\phi X}^{-} }{3 E(\nu-1)^{2}} + \frac{2 (\nu+1) \rho\Delta\ddot{q}_{1}^{-} }{E}- \frac{1}{3} \Delta ^{2} {q}_{1}^{-} \biggr)h^{3}, \\ F_{2} = & \bar{q}_{2} +\frac{q_{3Y}^{-}-(\nu-1) q_{3Y}^{+} }{\nu-1} + \biggl[ \frac{2 (\nu+1) \rho (2 \ddot{q}_{2}^{-}- \ddot{q}_{2}^{+} )}{3 E}+\frac{(4 \nu-1) q_{\phi Y}^{-} }{3 (\nu-1)} -\frac{2}{3} q_{\phi Y}^{+} \\ &{}+ \frac{1}{3} \Delta \bigl( q_{2}^{+} -2 q_{2}^{-} \bigr)\biggr]h + \biggl(\frac{2 (-6 \nu^{3}+5 \nu^{2}+7 \nu-4 ) \rho \ddot{q}_{3Y}^{-} }{3 E (\nu-1)^{2}} + \frac{2}{3} \Delta{q}_{3Y}^{-} \biggr)h^{2} \\ &{}+ \biggl(-\frac{8 (\nu+1)^{2} \rho^{2} \ddddot{q}_{2}^{-} }{3 E^{2}} - \frac { (\nu^{2}-\nu-2 ) \rho\ddot{q}_{\phi Y}^{-} }{3 E(\nu-1)^{2}} + \frac{2 (\nu+1) \rho\Delta\ddot{q}_{2}^{-} }{E}- \frac{1}{3} \Delta ^{2} {q}_{2}^{-} \biggr)h^{3}, \\ F_{3} =& \bar{q}_{3} +\frac{1}{2} \bigl(q_{\phi}^{+}-q_{\phi}^{-}\bigr) + \biggl(\frac{ (2 \nu^{2}+\nu-1 ) \rho \ddot{q}_{3}^{-} }{E (\nu-1)}-\frac{2}{5} \Delta\bigl(q_{3}^{+} + q_{3}^{-}\bigr) \biggr) h \\ &{}+ \biggl(\frac{2 \nu (\nu+1) \rho\ddot{q}_{\phi}^{-}}{3 E (\nu-1)} +\frac{(6 \nu-1) \Delta q_{\phi}^{-} }{15 (\nu-1)} - \frac{1}{15} \Delta q_{\phi}^{+} \biggr)h^{2} \\ &{}+ \biggl(\frac{1}{3} \Delta^{2} q_{3}^{-} - \frac{ (14 \nu^{3}-22 \nu ^{2}-19 \nu+17 ) \rho\Delta\ddot{q}_{3}^{-}}{15 E (\nu-1)^{2}} \biggr) h^{3} \\ &{}+ \biggl(-\frac{8 (\nu+1)^{2} \rho^{2} \ddddot{q}_{\phi}^{-}}{15 E^{2}} + \frac{ (10 \nu^{3}-3 \nu^{2}-7 \nu+6 ) \rho \Delta\ddot {q}_{\phi}^{-} }{15 E (\nu-1)^{2}} - \frac{1}{5} \Delta^{2} q_{\phi}^{-} \biggr) h^{4}. \end{aligned}$$
(129)

Appendix C: The Replacement Procedure in Sect. 6.2

The replacement procedure takes the following steps in sequence

  1. 1.

    Replace \(\ddddot{u}\) in (80)1 by utilizing (62)1, i.e., by taking twice time derivative of

    $$\frac{1}{2} \bar{E} \bigl[(1-\nu) \Delta u+ (1+\nu)\phi_{X} \bigr] + \bar{q}_{1} + f_{1} =\rho \ddot{u}, $$

    and similarly replace \(\ddddot{v}\) in (80)2 by utilizing (62)2.

  2. 2.

    Replace \(\Delta^{2} u\) in (80)1 by also utilizing (62)1, i.e., by taking a \(\Delta\) on the equation

    $$\frac{1}{2} \bar{E} \bigl[(1-\nu) \Delta u+ (1+\nu)\phi_{X} \bigr] - \bar{E} h \Delta w_{X} +\bar{q}_{1} + f_{1} =\rho \ddot{u}, $$

    and similarly replace \(\Delta^{2} v\) in (80)2 by utilizing (62)2.

  3. 3.

    Replace \(\Delta\phi_{X}\) and \(\Delta\phi_{Y}\) in (80)1,2 by using (65)1, i.e., by taking proper derivative of

    $$\bar{E} \Delta\phi - \bar{E} h \Delta^{2} w + \bar{q}_{\phi}+ f_{\phi}=\rho \ddot{\phi}, $$

    and replace \(\Delta^{2} \phi\) in (80)3 by conducting a \(\Delta\) on the above equation without the term \(\rho \ddot{\phi}\).

  4. 4.

    Replace \(\Delta^{2} w_{X}\) and \(\Delta^{2} w_{Y}\) in (80)1,2 by using (66), i.e., taking proper derivative of

    $$-\frac{1 }{3} \bar{E} h^{2} \Delta^{2} w + \bar{q}_{3} + f_{3} + h(\bar{q}_{\phi}+ f_{\phi})= \rho \ddot{w} + \frac{\rho\nu h}{\nu-1} \ddot{\phi}, $$

    and replace \(\Delta^{3} w\) in (80)3 by conducting a \(\Delta\) on the above equation without the term \(\ddot{\phi}\).

  5. 5.

    Eliminate the term \(\Delta\phi\) in the resulting (80)3 by utilizing the first two equations (like the derivation of (66)), and neglect the resulting \(\rho h^{3} \Delta\ddot{\phi }\) term on the right hand side.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Dai, HH. On a Consistent Dynamic Finite-Strain Plate Theory and Its Linearization. J Elast 125, 149–183 (2016). https://doi.org/10.1007/s10659-016-9575-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-016-9575-4

Keywords

Mathematics Subject Classification (2000)

Navigation