Skip to main content
Log in

Contact Transform for the Biharmonic Equation Applicable to Plane Stress Elastoplastic Elliptical Hole Problems

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

An analytical technique is developed that reduces the unknown elastic-plastic boundary of a linear elastic-perfectly plastic material containing an elliptical hole under tensile plane stress loading conditions into an equivalent mathematical problem with known boundaries. This mathematical transformation may facilitate this problem’s solution by either analytical or numerical means. Yield is assumed to occur in this analysis under the Tresca yield criterion. An example elastic-plastic problem illustrating this method is drawn from existing literature in the form of a perturbation solution for an elliptical hole derived by a series expansion about a circular boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cherepanov, G.P.: Mechanics of Brittle Fracture. McGraw-Hill, New York (1979)

    MATH  Google Scholar 

  2. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 2. Wiley, New York (1962)

    MATH  Google Scholar 

  3. De Bruijn, N.G.: Asymptotic Methods in Analysis, pp. 10–11. Dover, New York (1981)

    MATH  Google Scholar 

  4. Griffith, A.A.: The phenomena of rupture and flow in solids. Trans. R. Soc. Lond. A 221, 163–198 (1920)

    Article  ADS  Google Scholar 

  5. Hult, J.A.H., McClintock, F.A.: Elastic-plastic stress and strain distributions around sharp notches under repeated shear. In: Proceedings of the 9th International Congress of Applied Mechanics, Brussels, vol. 8, pp. 51–58 (1956)

    Google Scholar 

  6. Inglis, C.E.: Stresses in a plate due to the presence of cracks and sharp corners. Trans. Inst. Nav. Archit. 55, 219–241 (1913)

    Google Scholar 

  7. Ivlev, D.D., Ershov, L.V.: Perturbation Method in the Theory of an Elastic-Plastic Body, pp. 160–170. “Nauka,” Glav. red. fiziko-matematicheskoi lit-ry, Moscow (1978) (in Russian)

    Google Scholar 

  8. Kachanov, L.M.: Fundamentals of the Theory of Plasticity. Dover, Mineola (2004)

    Google Scholar 

  9. Lawrence, J.D.: A Catalog of Special Plane Curves, pp. 42–43. Dover, Mineola (1972)

    MATH  Google Scholar 

  10. Lieberstein, H.M.: Theory of Partial Differential Equations. Mathematics in Science and Engineering Series, vol. 93, pp. 12–17. Academic Press, New York (1972)

    MATH  Google Scholar 

  11. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Clift (1969)

    Google Scholar 

  12. Rice, J.R.: Contained plastic deformation near cracks and notches under longitudinal shear. Int. J. Fract. Mech. 2, 426–447 (1966)

    Google Scholar 

  13. Rice, J.R.: Mathematical analysis in the mechanics of fracture. In: Liebowitz, H. (ed.) Fracture: An Advanced Treatise, vol. 2, pp. 191–311. Academic Press, New York (1968)

    Google Scholar 

  14. Sokolovskii, V.V.: Theory of Plasticity, 3rd edn., pp. 391–392. Vyssh. shkola, Moscow (1969) (in Russian)

    Google Scholar 

  15. Unger, D.J.: Perfectly plastic caustics for the opening mode of fracture. Theor. Appl. Fract. Mech. 44, 82–94 (2005)

    Article  Google Scholar 

  16. Unger, D.J.: Path independent integral for an elliptical hole in a plate under tension for plane stress deformation theory. J. Elast. 92, 217–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Unger, D.J.: Large plastic deformations accompanying the growth of an elliptical hole in a thin plate. J. Elast. 99, 117–130 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Unger, D.J.: Analytical Fracture Mechanics. Dover, Mineola (2011)

    Google Scholar 

Download references

Acknowledgements

Support from the Institute of Global Enterprise in Indiana is gratefully acknowledged under the University of Evansville Global Scholar program. Additional thanks go to the late Dr. Michał Życzkowski for searching the Russian language literature for references concerning the elliptical hole problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Unger.

Appendix:  Various Coordinate Transformations

Appendix:  Various Coordinate Transformations

From (4.4) and (3.29), one derives using a chain rule that

$$ \frac{\partial\Delta}{\partial x} = \frac {\partial \Delta}{\partial\xi} \frac{\partial^{2}\psi}{\partial x^{2}} + \frac{\partial\Delta}{\partial\eta} \frac{\partial^{2}\psi}{\partial x\partial y} = \zeta \biggl( \frac{\partial\Delta}{\partial\xi} \frac{\partial^{2}\omega}{\partial\eta^{2}} - \frac{\partial \Delta}{\partial\eta} \frac{\partial^{2}\omega}{\partial\xi\partial \eta} \biggr). $$
(9.1)

Similarly, from (4.6) and (3.29) one finds

$$ \frac{\partial\Delta}{\partial y} = \frac {\partial \Delta}{\partial\xi} \frac{\partial^{2}\psi}{\partial x\partial y} + \frac{\partial\Delta}{\partial\eta} \frac{\partial^{2}\psi}{\partial y^{2}} = \zeta \biggl( - \frac{\partial\Delta}{\partial\xi} \frac{\partial^{2}\omega}{\partial\xi\partial\eta} + \frac {\partial \Delta}{\partial\eta} \frac{\partial^{2}\omega}{\partial\xi^{2}} \biggr). $$
(9.2)

Second order transformations of Δ, for substitution into (4.10), follow analogously as

$$\begin{aligned} \frac{\partial}{\partial x} \biggl( \frac{\partial \Delta}{\partial\xi} \biggr)& = \frac{\partial}{\partial\xi} \biggl( \frac{\partial\Delta}{\partial\xi} \biggr)\frac{\partial\xi}{\partial x} + \frac{\partial}{\partial\eta} \biggl( \frac{\partial\Delta}{\partial\xi} \biggr)\frac{\partial\eta}{\partial x} \\ &= \frac{\partial^{2}\Delta}{\partial \xi^{2}}\frac{\partial^{2}\psi}{\partial x^{2}} + \frac{\partial^{2}\Delta}{\partial\xi\partial\eta} \frac{\partial^{2}\psi}{\partial x\partial y} = \zeta \biggl( \frac{\partial^{2}\Delta}{\partial\xi^{2}}\frac{\partial ^{2}\omega}{\partial\eta^{2}} - \frac{\partial^{2}\Delta}{\partial\xi \partial \eta} \frac{\partial^{2}\omega}{\partial\xi\partial\eta} \biggr), \end{aligned}$$
(9.3)
$$\begin{aligned} \frac{\partial}{\partial x} \biggl( \frac{\partial \Delta}{\partial\eta} \biggr) &= \frac{\partial}{\partial\xi} \biggl( \frac{\partial\Delta}{\partial\eta} \biggr)\frac{\partial\xi}{\partial x} + \frac{\partial}{\partial\eta} \biggl( \frac{\partial\Delta}{\partial\eta} \biggr)\frac{\partial\eta}{\partial x} \\ &= \frac{\partial^{2}\Delta}{\partial\xi\partial \eta} \frac{\partial^{2}\psi}{\partial x^{2}} + \frac{\partial ^{2}\Delta}{\partial\xi\partial\eta} \frac{\partial^{2}\psi}{\partial x\partial y} = \zeta \biggl( \frac{\partial^{2}\Delta}{\partial\xi\partial\eta} \frac{\partial^{2}\omega}{\partial\eta^{2}} - \frac{\partial ^{2}\Delta}{\partial\eta^{2}}\frac{\partial^{2}\omega}{\partial\xi\partial \eta} \biggr), \end{aligned}$$
(9.4)
$$\begin{aligned} \frac{\partial}{\partial y} \biggl( \frac{\partial \Delta}{\partial\xi} \biggr) &= \frac{\partial}{\partial\xi} \biggl( \frac{\partial\Delta}{\partial\xi} \biggr)\frac{\partial\xi}{\partial y} + \frac{\partial}{\partial\eta} \biggl( \frac{\partial\Delta}{\partial\xi} \biggr)\frac{\partial\eta}{\partial y} \\ &= \frac{\partial^{2}\Delta}{\partial \xi^{2}}\frac{\partial^{2}\psi}{\partial x\partial y} + \frac{\partial^{2}\Delta}{\partial\xi\partial\eta} \frac{\partial^{2}\psi}{\partial y^{2}} = \zeta \biggl( - \frac{\partial^{2}\Delta}{\partial\xi^{2}}\frac{\partial ^{2}\omega}{\partial\xi\partial\eta} + \frac{\partial^{2}\Delta}{\partial \xi \partial\eta} \frac{\partial^{2}\omega}{\partial\xi^{2}} \biggr), \end{aligned}$$
(9.5)
$$\begin{aligned} \frac{\partial}{\partial y} \biggl( \frac{\partial \Delta}{\partial\eta} \biggr) &= \frac{\partial}{\partial\xi} \biggl( \frac{\partial\Delta}{\partial\eta} \biggr)\frac{\partial\xi}{\partial y} + \frac{\partial}{\partial\eta} \biggl( \frac{\partial\Delta}{\partial\eta} \biggr)\frac{\partial\eta}{\partial y} \\ &= \frac{\partial^{2}\Delta}{\partial\xi\partial \eta} \frac{\partial^{2}\psi}{\partial x\partial y} + \frac{\partial ^{2}\Delta}{\partial\eta^{2}}\frac{\partial^{2}\psi}{\partial y^{2}} = \zeta \biggl( - \frac{\partial^{2}\Delta}{\partial\xi\partial\eta} \frac{\partial^{2}\omega}{\partial\xi\partial\eta} + \frac{\partial^{2}\Delta}{\partial\eta^{2}}\frac{\partial ^{2}\omega}{\partial\xi^{2}} \biggr). \end{aligned}$$
(9.6)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unger, D.J. Contact Transform for the Biharmonic Equation Applicable to Plane Stress Elastoplastic Elliptical Hole Problems. J Elast 117, 139–161 (2014). https://doi.org/10.1007/s10659-014-9468-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-014-9468-3

Keywords

Mathematics Subject Classification (2010)

Navigation