Skip to main content
Log in

On the Path of a Quasi-static Crack in Mode III

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

A method for finding the path of a quasi-static crack growing in a brittle body is presented. The propagation process is modelled by a sequence of discrete steps optimizing the elastic energy released. An explicit relationship between the optimal growing direction and the parameters defining the local elastic field around the tip is obtained for an anti-plane field. This allows to describe a simple algorithm to compute the crack path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Amestoy and J.B. Leblond, Crack paths in plane situations II: Detailed form of the expansions of the stress intensity factors. Internat. J. Solids Struct. 29(4) (1992) 465–501.

    MATH  MathSciNet  Google Scholar 

  2. C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Internat. edn. McGraw-Hill, Singapore (1978).

    MATH  Google Scholar 

  3. M. Brokate and A. Khludnev, On crack propagation shapes in elastic bodies. Z. Angew. Math. Phys. 55 (2004) 318–329.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Buliga, Energy minimizing brittle crack propagation. J. Elasticity 52 (1999) 201–238.

    MATH  MathSciNet  Google Scholar 

  5. M. Buliga, Brittle crack propagation based on an optimal energy balance. Rev. Roum. Math. Pures Appl. 45(2) (2001) 201–209.

    MathSciNet  Google Scholar 

  6. B. Cotterell and J.R. Rice, Slightly curved or kinked cracks. Internat. J. Fracture 16(2) (1980) 155–169.

    Google Scholar 

  7. G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fracture: existence and approximation results. Arch. Rational Mech. Anal. 162(2) (2002) 101–135.

    MATH  ADS  Google Scholar 

  8. G.A. Francfort and C.J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture. Comm. Pure Appl. Math. LVI (2003) 1465–1500.

    MathSciNet  Google Scholar 

  9. G.A. Francfort and J.J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8) (1998) 1319–1342.

    MATH  ADS  MathSciNet  Google Scholar 

  10. L.B. Freund, Dynamic Fracture Mechanics, 2nd edn. Cambridge Univ. Press, Cambridge (1998).

    Google Scholar 

  11. R.V. Goldstein and R.L. Salganik, Brittle fracture of solids with arbitrary cracks. Internat. J. Fracture 10 (1974) 507.

    Google Scholar 

  12. A.A. Griffith, The phenomenon of rupture and flow in solids. Phylosoph. Trans. Roy. Soc. London A 221 (1920) 163–198.

    ADS  Google Scholar 

  13. G.R. Irwin, Analysis of stresses and strains near the end of a crack transversing a plate. J. Appl. Mech. 24 (1957) 361–364.

    Google Scholar 

  14. J.B. Leblond, Crack paths in plane situations I: General form of the expansion of the stress intensity factors. Internat. J. Solids Struct. 25(11) (1989) 1311–1325.

    MATH  MathSciNet  Google Scholar 

  15. Z. Nehari, Conformal Mapping. Dover, New York (1975).

    Google Scholar 

  16. J.R. Rice, Mathematical analysis in the mechanics of fracture. In: H. Liebowitz (ed.), Fracture, An Advanced Treatise, Vol. 2. Academic Press, New York (1968) pp. 191–311.

    Google Scholar 

  17. G.C. Sih, Stress distribution near internal crack tips for longitudinal shear problems. J. Appl. Mech. (March 1965) 51–58.

  18. T.J. Stone and I. Babuska, A numerical method with a posteriori error estimation for determining the path taken by a propagating crack. Comput. Methods Appl. Mech. Engrg. 160 (1998) 245–271.

    MATH  MathSciNet  Google Scholar 

  19. C.H. Wu, Elasticity problems of a slender Z-crack. J. Elasticity 8(2) (1978) 235–257.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo E. Oleaga.

Additional information

Mathematics Subject Classifications (2000)

74R05, 74B05, 74G70.

Gerardo E. Oleaga: Supported by EU-Project “Front Singularities” University of Leipzig and the Max Planck Institute MIS. Partial support was also provided by the Spanish DGES project BFM2000-0605.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oleaga, G.E. On the Path of a Quasi-static Crack in Mode III. J Elasticity 76, 163–189 (2004). https://doi.org/10.1007/s10659-005-0297-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-005-0297-2

Keywords

Navigation