Skip to main content

Advertisement

Log in

Bacillus species’ contributions to the management of mycotoxigenic Fusarium species in cereals

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Cereals are an international commodity grown in almost all cultivable regions of the world. The three most important cereals that are destined for human and animal consumption are maize (Zea mays), wheat (Triticum spp.) and rice (Oryza sativa). These crops can be affected by biotic and abiotic factors in all phenological stages, affecting quality and final yield. The Fusarium graminearum species complex is the main causal agent of ear blights, root rots and crown rots, affecting yield, grain quality and safety, mainly due to the accumulation of certain mycotoxins from the trichothecenes group. Other Fusarium species such as F. proliferatum and F. verticillioides have the ability to produce fumonisins, which can cause severe mycotoxicosis in animals. Prevention of these phytopathogens is partially achieved via the use of a variety of management practices including the application of chemical fungicides, resistant varieties, crop rotation with non-host cultivars or tillage. The use of microorganisms for the control of phytopathogens is an emerging strategy that can be used as part of an integrated pest management. Bacillus species are important biocontrol agents, since they can adapt to extreme environmental conditions (temperature, salinity, water stress) and have the ability to produce secondary metabolites with a wide range of antifungal and antibacterial activity. In this review, the main characteristics of Bacillus species aiming to control phytopathogens through direct or indirect mechanisms are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abaya, A., Serajazari, M., & Hsiang, T. (2021). Control of Fusarium head blight using the endophytic fungus, Simplicillium lamellicola, and its effect on the growth of Triticum aestivum. Biological Control, 160. Scopus. https://doi.org/10.1016/j.biocontrol.2021.104684

  • Adeniji, A. A., Aremu, O. S., & Babalola, O. O. (2019). Selecting lipopeptide-producing, Fusarium-suppressing Bacillus spp.: Metabolomic and genomic probing of Bacillus velezensis NWUMFkBS10.5. MicrobiologyOpen, 8(6). Scopus. https://doi.org/10.1002/mbo3.742

  • Alenezi, F. N., Slama, H. B., Bouket, A. C., Cherif-Silini, H., Silini, A., Luptakova, L., Nowakowska, J. A., Oszako, T., & Belbahri, L. (2021). Bacillus velezensis: A Treasure House of Bioactive Compounds of Medicinal, Biocontrol and Environmental Importance. Forests, 12(12). https://doi.org/10.3390/f12121714

  • Ameye, M., Audenaert, K., De Zutter, N., Steppe, K., Van Meulebroek, L., Vanhaecke, L., De Vleesschauwer, D., Haesaert, G., & Smagghe, G. (2015). Priming of wheat with the green leaf volatile Z-3-Hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production. Plant Physiology, 167(4), 1671–1684. https://doi.org/10.1104/pp.15.00107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrić, S., Meyer, T., & Ongena, M. (2020). Bacillus Responses to Plant-Associated Fungal and Bacterial Communities. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01350

  • Asaturova, A. M., Zhevnova, N. A., Tomashevich, N. S., Sidorova, T. M., Homyak, A. I., Dubyaga, V. M., Nadykta, V. D., Zharikov, A. P., Kostyukevich, Y. I., & Tupertsev, B. S. (2022). Evaluation of Bacillus velezensis Biocontrol Potential against Fusarium Fungi on Winter Wheat. Agronomy, 12(8). https://doi.org/10.3390/agronomy12081956

  • Bakker, P. A. H. M., Doornbos, R. F., Zamioudis, C., Berendsen, R. L., & Pieterse, C. M. J. (2013). Induced systemic resistance and the rhizosphere microbiome. Plant Pathology Journal, 29(2), 136–143. https://doi.org/10.5423/PPJ.SI.07.2012.0111

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbosa, J., Caetano, T., & Mendo, S. (2015). Class I and Class II Lanthipeptides Produced by Bacillus spp. Journal of Natural Products, 78(11), 2850–2866. https://doi.org/10.1021/np500424y

    Article  CAS  PubMed  Google Scholar 

  • Bencheikh, A., Hicham, M., Meriem, D. B., Asma, G., Khalida, B., & Rouag, N. (2022). Efficiency of durum wheat seeds biopriming by rhizobacteria in the biocontrol of Fusarium culmorum and Fusarium chlamydosporum infecting durum wheat in Algeria. Archives of Phytopathology and Plant Protection, 55(6), 653–675. https://doi.org/10.1080/03235408.2021.2025006

    Article  CAS  Google Scholar 

  • Byrne, M. B., Thapa, G., Doohan, F. M., & Burke, J. I. (2022). Lactic acid bacteria as potential biocontrol agents for Fusarium head blight disease of Spring Barley. Frontiers in Microbiology, 13. Scopus. https://doi.org/10.3389/fmicb.2022.912632

  • Cantoro, R., Palazzini, J. M., Yerkovich, N., Miralles, D. J., & Chulze, S. N. (2021). Bacillus velezensis RC 218 as a biocontrol agent against Fusarium graminearum: Effect on penetration, growth and TRI5 expression in wheat spikes. BioControl, 66(2), 259–270. https://doi.org/10.1007/s10526-020-10062-7

    Article  CAS  Google Scholar 

  • Cawoy, H., Debois, D., Franzil, L., De Pauw, E., Thonart, P., & Ongena, M. (2015). Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microbial Biotechnology, 8(2), 281–295. https://doi.org/10.1111/1751-7915.12238

    Article  CAS  PubMed  Google Scholar 

  • Cendoya, E., Monge, M. del P., Chiacchiera, S. M., Farnochi, M. C., & Ramirez, M. L. (2018). Influence of water activity and temperature on growth and fumonisin production by Fusarium proliferatum strains on irradiated wheat grains. International Journal of Food Microbiology, 266, 158–166. https://doi.org/10.1016/j.ijfoodmicro.2017.12.001

  • Chen, X. H., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., Süssmuth, R., Piel, J., & Borriss, R. (2009). Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Functional Genome Research on Bacteria Relevant for Agriculture, Environment and Biotechnology, 140(1), 27–37. https://doi.org/10.1016/j.jbiotec.2008.10.011

    Article  CAS  Google Scholar 

  • Chen, L., Heng, J., Qin, S., & Bian, K. (2018). A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PLOS ONE, 13(6), e0198560. https://doi.org/10.1371/journal.pone.0198560

  • Chiotta, M. L., Fumero, M. V., Cendoya, E., Palazzini, J. M., Alaniz-Zanon, M. S., Ramirez, M. L., & Chulze, S. N. (2020). Toxigenic fungal species and natural occurrence of mycotoxins in crops harvested in Argentina. Revista Argentina De Microbiología, 52(4), 339–347. https://doi.org/10.1016/j.ram.2020.06.002

    Article  PubMed  Google Scholar 

  • Chowdhury, S. P., Uhl, J., Grosch, R., Alquéres, S., Pittroff, S., Dietel, K., Schmitt-Kopplin, P., Borriss, R., & Hartmann, A. (2015). Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Molecular Plant-Microbe Interactions®, 28(9), 984–995. https://doi.org/10.1094/MPMI-03-15-0066-R

  • Collins, D. P., Jacobsen, B. J., & Maxwell, B. (2003). Spatial and temporal population dynamics of a phyllosphere colonizing Bacillus subtilis biological control agent of sugar beet cercospora leaf spot. Biological Control, 26(3), 224–232. https://doi.org/10.1016/S1049-9644(02)00146-9

    Article  Google Scholar 

  • Dunlap, C. A. (2019). Taxonomy of registered Bacillus spp. Strains used as plant pathogen antagonists. Biological Control, 134, 82–86. https://doi.org/10.1016/j.biocontrol.2019.04.011

    Article  Google Scholar 

  • Dunlap, C. A., & Bowman, M. J. (2014). The use of genomics and chemistry to screen for secondary metabolites in Bacillus spp. biocontrol organisms (C. A. Dunlap, Trans.). Biopesticides: State of the Art and Future Opportunities, 95–112. PubAg. https://doi.org/10.1021/bk-2014-1172.ch008

  • Dunlap, C. A., Bowman, M. J., & Schisler, D. A. (2013). Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3: A biocontrol antagonist of Fusarium head blight. Biological Control, 64(2), 166–175. https://doi.org/10.1016/j.biocontrol.2012.11.002

  • Dunlap, C. A., Kim, S.-J., Kwon, S.-W., & Rooney, A. P. (2015). Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. Plantarum is a later heterotypic synonym of Bacillus methylotrophicus. In International Journal of Systematic and Evolutionary Microbiology, (Vol. 65, Issue Pt_7, pp. 2104–2109). Microbiology Society.

  • Dutilloy, E., Oni, F. E., Esmaeel, Q., Clément, C., & Barka, E. A. (2022). Plant beneficial bacteria as bioprotectants against Wheat and Barley diseases. Journal of Fungi, 8(6). https://doi.org/10.3390/jof8060632

  • Edwards, S. G., & Godley, N. P. (2010). Reduction of Fusarium head blight and deoxynivalenol in wheat with early fungicide applications of prothioconazole. Food Additives & Contaminants: Part A, 27(5), 629–635. https://doi.org/10.1080/19440040903515942

    Article  CAS  Google Scholar 

  • Emam, A. M., & Dunlap, C. A. (2020). Genomic and phenotypic characterization of Bacillus velezensis AMB-y1; A potential probiotic to control pathogens in aquaculture. Antonie Van Leeuwenhoek, 113(12), 2041–2052. https://doi.org/10.1007/s10482-020-01476-5

    Article  CAS  PubMed  Google Scholar 

  • Erazo, J. G., Palacios, S. A., Pastor, N., Giordano, F. D., Rovera, M., Reynoso, M. M., Venisse, J. S., & Torres, A. M. (2021). Biocontrol mechanisms of Trichoderma harzianum ITEM 3636 against peanut brown root rot caused by Fusarium solani RC 386. Biological Control, 164. Scopus. https://doi.org/10.1016/j.biocontrol.2021.104774

  • European Commission (2006). COMMISSION RECOMMENDATION of 17 August 2006 on the Presence of Deoxynivalenol, Zearalenone, Ochratoxin A, T-2 and HT-2 and Fumonisins in Products Intended for Animal Feeding (2006/576/EC).  Official Journal of the European Union, (vol. 49, pp. 7–9). Available at. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:229:0007:0009:EN:PDF

  • Ferrigo, D., Raiola, A., & Causin, R. (2016). Fusarium toxins in cereals: Occurrence, legislation, factors promoting the appearance and their management. Molecules, 21(5). https://doi.org/10.3390/molecules21050627

  • Food and Agriculture Organization of the United Nations. FAO (2023). https://www.fao.org/worldfoodsituation/csdb/es/

  • Food and Drug Administration (FDA) (2010). Guidance for Industry and FDA: Advisory Levels for Deoxynivalenol (DON) in Finished Wheat Products for Human Consumption and Grains and Grain By-Products Used for Animal Feed. US FDA Silver Spring, MD, USA. Available at. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-and-fda-advisory-levels-deoxynivalenol-don-finished-wheat-products-human

  • Gabriele, N.-W., Daniela, O., Anne, R., Jens, B., Bettina, K., Tamara, H., & Erhard, B. (2012). Genetic control of osmoadaptive glycine betaine synthesis in Bacillus subtilis through the choline-sensing and glycine betaine-responsive GbsR repressor. Journal of Bacteriology, 194(10), 2703–2714. https://doi.org/10.1128/JB.06642-11

    Article  CAS  Google Scholar 

  • Gao, Z., Zhang, B., Liu, H., Han, J., & Zhang, Y. (2017). Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biological Control, 105, 27–39. https://doi.org/10.1016/j.biocontrol.2016.11.007

    Article  Google Scholar 

  • Gao, C., Gong, Z., Ji, X., Dang, M., He, Q., Sun, H., & Guo, W. (2022). Estimation of Fusarium head blight severity based on transfer learning. Agronomy, 12(8). https://doi.org/10.3390/agronomy12081876

  • Gimeno, A., Kägi, A., Drakopoulos, D., Bänziger, I., Lehmann, E., Forrer, H.-R., Keller, B., & Vogelgsang, S. (2020). From laboratory to the field: Biological control of Fusarium graminearum on infected maize crop residues. Journal of Applied Microbiology, 129(3), 680–694. https://doi.org/10.1111/jam.14634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez Expósito, R., de Bruijn, I., Postma, J., & Raaijmakers, J. M. (2017). Current Insights into the Role of Rhizosphere Bacteria in Disease Suppressive Soils. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.02529

  • Gomez Pallarés, M., Edel León, A., & Rosell, C. M. (2007). De tales harinas, tales panes: Granos, harinas y productos de panificación en Iberoamerica (Ed: Alberto Edel León; Cristina M. Rosell). Hugo Baez.

  • Gonçalves, A., Gkrillas, A., Dorne, J. L., Dall’Asta, C., Palumbo, R., Lima, N., Battilani, P., Venâncio, A., & Giorni, P. (2019). Pre- and Postharvest Strategies to Minimize Mycotoxin Contamination in the Rice Food Chain. Comprehensive Reviews in Food Science and Food Safety, 18(2), 441–454. https://doi.org/10.1111/1541-4337.12420

  • Gond, S. K., Bergen, M. S., Torres, M. S., & White, J. F., Jr. (2015). Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiological Research, 172, 79–87. https://doi.org/10.1016/j.micres.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  • Gotor-Vila, A., Teixidó, N., Di Francesco, A., Usall, J., Ugolini, L., Torres, R., & Mari, M. (2017). Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry. Food Microbiology, 64, 219–225. https://doi.org/10.1016/j.fm.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  • Hadj Brahim, A., Ben Ali, M., Daoud, L., Jlidi, M., Akremi, I., Hmani, H., Feto, N. A., & Ben Ali, M. (2022). Biopriming of Durum wheat seeds with endophytic diazotrophic bacteria enhances tolerance to Fusarium head blight and salinity. Microorganisms, 10(5). https://doi.org/10.3390/microorganisms10050970

  • Harirchi, S., Sar, T., Ramezani, M., Aliyu, H., Etemadifar, Z., Nojoumi, S. A., Yazdian, F., Awasthi, M. K., & Taherzadeh, M. J. (2022). Bacillales: From taxonomy to biotechnological and industrial perspectives. Microorganisms, 10(12). https://doi.org/10.3390/microorganisms10122355

  • He, W.-J., Yuan, Q.-S., Zhang, Y.-B., Guo, M.-W., Gong, A.-D., Zhang, J.-B., Wu, A.-B., Huang, T., Qu, B., Li, H.-P., & Liao, Y.-C. (2016). Aerobic De-epoxydation of trichothecene mycotoxins by a soil bacterial consortium isolated using in situ soil enrichment. Toxins, 8(10). https://doi.org/10.3390/toxins8100277

  • Hori, K., & Matsumoto, S. (2010). Bacterial adhesion: From mechanism to control. Invited Review Issue 2010, 48(3), 424–434. https://doi.org/10.1016/j.bej.2009.11.014

  • Hu, C., Chen, P., Zhou, X., Li, Y., Ma, K., Li, S., Liu, H., & Li, L. (2022). Arms race between the host and pathogen associated with Fusarium head blight of wheat. Cells, 11(15). Scopus. https://doi.org/10.3390/cells11152275

  • Ji, F., He, D., Olaniran, A. O., Mokoena, M. P., Xu, J., & Shi, J. (2019). Occurrence, toxicity, production and detection of Fusarium mycotoxin: A review. Food Production, Processing and Nutrition, 1(1), 6. https://doi.org/10.1186/s43014-019-0007-2

    Article  Google Scholar 

  • Kim, Y., Kang, I. J., Shin, D. B., Roh, J. H., Heu, S., & Shim, H. K. (2018). Timing of Fusarium head blight infection in rice by heading stage. Mycobiology, 46(3), 283–286. https://doi.org/10.1080/12298093.2018.1496637

    Article  PubMed  PubMed Central  Google Scholar 

  • Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00845

  • Lee, J., Chang, I.-Y., Kim, H., Yun, S.-H., Leslie, J. F., & Lee, Y.-W. (2009). Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Applied and Environmental Microbiology, 75(10), 3289–3295. https://doi.org/10.1128/AEM.02287-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, T., Lee, S.-H., Lee, S.-H., Shin, J. Y., Yun, J.-C., Lee, Y.-W., & Ryu, J.-G. (2011). Occurrence of Fusarium mycotoxins in rice and its milling by-products in Korea. Journal of Food Protection, 74(7), 1169–1174. https://doi.org/10.4315/0362-028X.JFP-10-564

    Article  CAS  PubMed  Google Scholar 

  • Legein, M., Smets, W., Vandenheuvel, D., Eilers, T., Muyshondt, B., Prinsen, E., Samson, R., & Lebeer, S. (2020). Modes of Action of Microbial Biocontrol in the Phyllosphere. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01619

  • Leplat, J., Friberg, H., Abid, M., & Steinberg, C. (2013). Survival of Fusarium graminearum, the causal agent of Fusarium head blight A review. Agronomy for Sustainable Development, 33(1), 97–111. https://doi.org/10.1007/s13593-012-0098-5

    Article  Google Scholar 

  • Liang, N., Charron, J.-B., & Jabaji, S. (2023). Comparative transcriptome analysis reveals the biocontrol mechanism of Bacillus velezensis E68 against Fusarium graminearum DAOMC 180378, the causal agent of Fusarium head blight. PLOS ONE, 18(1), e0277983. https://doi.org/10.1371/journal.pone.0277983

  • Makandar, R., Nalam, V. J., Lee, H., Trick, H. N., Dong, Y., & Shah, J. (2012). Salicylic acid regulates basal resistance to Fusarium head blight in wheat. Molecular Plant-Microbe Interactions®, 25(3), 431–439. https://doi.org/10.1094/MPMI-09-11-0232

  • Maksimov, I. V., Singh, B. P., Cherepanova, E. A., Burkhanova, G. F., & Khairullin, R. M. (2020). Prospects and applications of lipopeptide-producing bacteria for plant protection (review). Applied Biochemistry and Microbiology, 56(1), 15–28. https://doi.org/10.1134/S0003683820010135

    Article  CAS  Google Scholar 

  • McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G., & Van Sanford, D. (2012). A unified effort to fight an enemy of Wheat and Barley: Fusarium head blight. Plant Disease, 96(12), 1712–1728. https://doi.org/10.1094/PDIS-03-12-0291-FE

    Article  PubMed  Google Scholar 

  • Minchev, Z., Kostenko, O., Soler, R., & Pozo, M. J. (2021). Microbial consortia for effective biocontrol of root and foliar diseases in tomato. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.756368

  • Mourelos, C. A., Malbrán, I., Balatti, P. A., Ghiringhelli, P. D., & Lori, G. A. (2014). Gramineous and non-gramineous weed species as alternative hosts of Fusarium graminearum, causal agent of Fusarium head blight of wheat, in Argentina. Crop Protection, 65, 100–104. https://doi.org/10.1016/j.cropro.2014.07.013

    Article  Google Scholar 

  • Mulani, R., Mehta, K., Saraf, M., & Goswami, D. (2021). Decoding the mojo of plant-growth-promoting microbiomes. Physiological and Molecular Plant Pathology, 115, 101687. https://doi.org/10.1016/j.pmpp.2021.101687

  • Myo, E. M., Liu, B., Ma, J., Shi, L., Jiang, M., Zhang, K., & Ge, B. (2019). Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion. Biological Control, 134, 23–31. https://doi.org/10.1016/j.biocontrol.2019.03.017

    Article  Google Scholar 

  • Oldenburg, E., Höppner, F., Ellner, F., & Weinert, J. (2017). Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Mycotoxin Research, 33(3), 167–182. https://doi.org/10.1007/s12550-017-0277-y

    Article  CAS  PubMed  Google Scholar 

  • Palazzini, J. M., Ramirez, M. L., Alberione, E. J., Torres, A. M., & Chulze, S. N. (2009). Osmotic stress adaptation, compatible solutes accumulation and biocontrol efficacy of two potential biocontrol agents on Fusarium head blight in wheat. Biological Control, 51(3), 370–376. https://doi.org/10.1016/j.biocontrol.2009.07.008

    Article  Google Scholar 

  • Palazzini, J. M., Groenenboom-de Haas, B. H., Torres, A. M., Köhl, J., & Chulze, S. N. (2013). Biocontrol and population dynamics of Fusarium spp. On wheat stubble in Argentina. Plant Pathology, 62(4), 859–866. https://doi.org/10.1111/j.1365-3059.2012.02686.x

  • Pan, H.-Q., Li, Q.-L., & Hu, J.-C. (2017). The complete genome sequence of Bacillus velezensis 9912D reveals its biocontrol mechanism as a novel commercial biological fungicide agent. Journal of Biotechnology, 247, 25–28. https://doi.org/10.1016/j.jbiotec.2017.02.022

    Article  CAS  PubMed  Google Scholar 

  • Patel, R., Mehta, K., Prajapati, J., Shukla, A., Parmar, P., Goswami, D., & Saraf, M. (2022). An anecdote of mechanics for Fusarium biocontrol by plant growth promoting microbes. Biological Control, 174, 105012. https://doi.org/10.1016/j.biocontrol.2022.105012

  • Pestka, J. J. (2010). Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Archives of Toxicology, 84(9), 663–679. https://doi.org/10.1007/s00204-010-0579-8

    Article  CAS  PubMed  Google Scholar 

  • Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52(1), 347–375. https://doi.org/10.1146/annurev-phyto-082712-102340

    Article  CAS  PubMed  Google Scholar 

  • Quiza, L., St-Arnaud, M., & Yergeau, E. (2015). Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00507

  • Rabbee, M. F., Ali, Md. S., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6). https://doi.org/10.3390/molecules24061046

  • Rana, K. L., Kour, D., Kaur, T., Devi, R., Yadav, A. N., Yadav, N., Dhaliwal, H. S., & Saxena, A. K. (2020). Endophytic microbes: Biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek, 113(8), 1075–1107. https://doi.org/10.1007/s10482-020-01429-y

    Article  CAS  PubMed  Google Scholar 

  • Reyna, M., Pia Macor, E., Carolina Vilchez, A., & Laura Villasuso, A. (2023). Response in barley roots during interaction with Bacillus subtilis and Fusarium graminearum. Biological Control, 179. Scopus. https://doi.org/10.1016/j.biocontrol.2022.105128

  • Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: A review. Biotechnology & Biotechnological Equipment, 31(3), 446–459. https://doi.org/10.1080/13102818.2017.1286950

    Article  CAS  Google Scholar 

  • Spolti, P., Jorge, B. C. de, & Del Ponte, E. M. (2012). Sensitivity of Fusarium graminearum causing head blight of wheat in Brazil to tebuconazole and metconazole fungicides. Tropical Plant Pathology, 37.

  • Starkey, D. E., Ward, T. J., Aoki, T., Gale, L. R., Kistler, H. C., Geiser, D. M., Suga, H., Tóth, B., Varga, J., & O’Donnell, K. (2007). Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genetics and Biology : FG & B, 44(11), 1191–1204. https://doi.org/10.1016/j.fgb.2007.03.001

    Article  CAS  Google Scholar 

  • Subba, R., & Mathur, P. (2022). Functional attributes of microbial and plant based biofungicides for the defense priming of crop plants. Theoretical and Experimental Plant Physiology, 34(3), 301–333. Scopus. https://doi.org/10.1007/s40626-022-00249-x

  • Tang, H. W., Phapugrangkul, P., Fauzi, H. M., & Tan, J. S. (2021). Lactic acid bacteria bacteriocin, an antimicrobial peptide effective against multidrug resistance: A comprehensive review. International Journal of Peptide Research and Therapeutics, 28(1), 14. https://doi.org/10.1007/s10989-021-10317-6

    Article  CAS  Google Scholar 

  • Tian, Y., Zhang, D., Cai, P., Lin, H., Ying, H., Hu, Q.-N., & Wu, A. (2022). Elimination of Fusarium mycotoxin deoxynivalenol (DON) via microbial and enzymatic strategies: Current status and future perspectives. Trends in Food Science and Technology, 124, 96–107. Scopus. https://doi.org/10.1016/j.tifs.2022.04.002

  • Torres, A. M., Palacios, S. A., Yerkovich, N., Palazzini, J. M., Battilani, P., Leslie, J. F., Logrieco, A. F., & Chulze, S. N. (2019). Fusarium head blight and mycotoxins in wheat: Prevention and control strategies across the food chain. World Mycotoxin Journal, 12(4), 333–355. https://doi.org/10.3920/WMJ2019.2438

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2023). https://www.epa.gov/newsreleases/search/year/2023

  • Wachowska, U., Kucharska, K., Pluskota, W., Czaplicki, S., & Stuper-Szablewska, K. (2020). Bacteria associated with winter wheat degrade fusarium mycotoxins and triazole fungicide residues. Agronomy, 10(11). Scopus. https://doi.org/10.3390/agronomy10111673

  • Wang, C., Cao, Y., Wang, Y., Sun, L., & Song, H. (2019). Enhancing surfactin production by using systematic CRISPRi repression to screen amino acid biosynthesis genes in Bacillus subtilis. Microbial Cell Factories, 18(1), 90. https://doi.org/10.1186/s12934-019-1139-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Sun, L., Zhang, W., Chi, F., Hao, X., Bian, J., & Li, Y. (2020). Bacillus velezensis BM21, a potential and efficient biocontrol agent in control of corn stalk rot caused by Fusarium graminearum. Egyptian Journal of Biological Pest Control, 30(1), 9. https://doi.org/10.1186/s41938-020-0209-6

    Article  Google Scholar 

  • Wegulo, S. N., Bockus, W. W., Nopsa, J. H., De Wolf, E. D., Eskridge, K. M., Peiris, K. H. S., & Dowell, F. E. (2011). Effects of integrating cultivar resistance and fungicide application on Fusarium head blight and deoxynivalenol in winter wheat. Plant Disease, 95(5), 554–560. https://doi.org/10.1094/PDIS-07-10-0495

    Article  PubMed  Google Scholar 

  • Wei, F., Hu, X., & Xu, X. (2016). Dispersal of Bacillus subtilis and its effect on strawberry phyllosphere microbiota under open field and protection conditions. Scientific Reports, 6(1), 22611. https://doi.org/10.1038/srep22611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood, J. M., Bremer, E., Csonka, L. N., Kraemer, R., Poolman, B., van der Heide, T., & Smith, L. T. (2001). Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comparative Biochemistry and Physiology Part a: Molecular & Integrative Physiology, 130(3), 437–460. https://doi.org/10.1016/S1095-6433(01)00442-1

    Article  CAS  Google Scholar 

  • Xu, W., Zhang, L., Goodwin, P. H., Xia, M., Zhang, J., Wang, Q., Liang, J., Sun, R., Wu, C., & Yang, L. (2020a). Isolation, Identification, and complete genome assembly of an endophytic Bacillus velezensis YB-130, potential biocontrol agent against Fusarium graminearum. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.598285

  • Xu, W., Zhang, L., Goodwin, P. H., Xia, M., Zhang, J., Wang, Q., Liang, J., Sun, R., Wu, C., & Yang, L. (2020b). Isolation, Identification, and complete genome assembly of an endophytic Bacillus velezensis YB-130, potential biocontrol agent against Fusarium graminearum. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.598285

  • Xue, A. G., Chen, Y., Voldeng, H. D., Fedak, G., Savard, M. E., Längle, T., Zhang, J., & Harman, G. E. (2014). Concentration and cultivar effects on efficacy of CLO-1 biofungicide in controlling Fusarium head blight of wheat. Biological Control, 73, 2–7. https://doi.org/10.1016/j.biocontrol.2014.02.010

    Article  Google Scholar 

  • Yerkovich, N., Cantoro, R., Palazzini, J. M., Torres, A., & Chulze, S. N. (2020). Fusarium head blight in Argentina: Pathogen aggressiveness, triazole tolerance and biocontrol-cultivar combined strategy to reduce disease and deoxynivalenol in wheat. Crop Protection, 137, 105300. https://doi.org/10.1016/j.cropro.2020.105300

  • Zeriouh, H., de Vicente, A., Pérez-García, A., & Romero, D. (2014). Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environmental Microbiology, 16(7), 2196–2211. https://doi.org/10.1111/1462-2920.12271

    Article  CAS  PubMed  Google Scholar 

  • Zhao, J., Zhou, Z., Bai, X., Zhang, D., Zhang, L., Wang, J., Wu, B., Zhu, J., & Yang, Z. (2022). A novel of new class II bacteriocin from Bacillus velezensis HN-Q-8 and its antibacterial activity on Streptomyces scabies. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.943232

  • Zhou, D., Wang, X., Chen, G., Sun, S., Yang, Y., Zhu, Z., & Duan, C. (2018). The major Fusarium species causing maize ear and kernel rot and their toxigenicity in Chongqing, China. Toxins, 10(2). https://doi.org/10.3390/toxins10020090

  • Zihalirwa Kulimushi, P., Argüelles Arias, A., Franzil, L., Steels, S., & Ongena, M. (2017). Stimulation of Fengycin-type antifungal lipopeptides in Bacillus amyloliquefaciens in the presence of the maize fungal pathogen Rhizomucor variabilis. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00850

Download references

Funding

This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (MINCyT) through PICT-2019-2576 Préstamo BID (2019-2024) and Consejo Nacional de Ciencia y Tecnología (CONICET) through PIP 11220200100560CO (2021-2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Palazzini.

Ethics declarations

Conflict of interest

The author declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palazzini, J.M. Bacillus species’ contributions to the management of mycotoxigenic Fusarium species in cereals. Eur J Plant Pathol 167, 539–550 (2023). https://doi.org/10.1007/s10658-023-02736-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-023-02736-6

Keywords

Navigation