Skip to main content
Log in

Trichoderma as a biological agent of Fusarium oxysporum species complex and Vigna unguiculata growth promoter

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the potential antagonistic role of Trichoderma in the control of Fusarium isolates belonging to the Fusarium oxysporum species complex (FOSC) and in the promotion of growth in Vigna unguiculata plants. The antagonistic action of Trichoderma isolates against Fusarium in vitro and in vivo was verified. Seven Trichoderma isolates obtained in vitro were selected for in vivo assays, which consisted of the addition of 20 mL of a suspension containing 106 conidia/mL of the pathogenic isolates and 20 mL containing 107 conidia/mL of Trichoderma on seeds of the BRS Tumucumaque cowpea variety. Most Trichoderma isolates efficiently inhibited the mycelial growth of Fusarium isolates. Trichoderma asperelloides (URM7898 and T18), T. asperellum (URM7902, T48, and T20), and the isolates T38 and T30 were selected for in vivo assays, which, according to the combinations tested, promoted reductions of up to 52.61% in plants with wilt symptoms. Plant dry biomass evaluations indicated that Trichoderma isolates promoted plant growth by up to 48.62%. This is the first report on the use of T. asperelloides to control Fusarium wilt in cowpea crops and indicates its potential use in disease management in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alfenas, A. C., Ferreira, F. A., Mafia, R. G., & Gonçalves, R. C. (2007). Isolamento de fungos fitopatogênicos. In A. C. Alfenas & R. G. Mafia (Eds.), Métodos em fitopatologia (pp. 53–90). Ed. UFV.

    Google Scholar 

  • Amaral, A. C. T., Costa, A. F., Tiago, P. V., & Oliveira, N. T. (2018). Biocontrole de Sclerotinia sclerotiorum por espécies de Trichoderma provenientes de sistemas agroflorestais. Anais da Academia Pernambucana de Ciência Agronômica, 15(2), 145–152.

    Google Scholar 

  • Aoki, T., O’Donnell, K., & Geiser, D. M. (2014). Systematics of key phytopathogenic fusarium species: Current status and future challenges. Journal of General Plant Pathology, 80, 189–201.

    Article  CAS  Google Scholar 

  • Araujo, A. S., Blum, L. E. B., & Figueiredo, C. C. (2019). Biochar and Trichoderma harzianum for the control of Macrophomina phaseolina. Brazilian Archives of Biology and Technology, 62, e19180259. https://doi.org/10.1590/1678-4324-2019180259

    Article  CAS  Google Scholar 

  • Assunção, I. P., Michereff, S. J., Mizubuti, E. S. G., & Brommonschenkel, S. H. (2003). Influência da intensidade da murcha-de-fusário no rendimento do caupi. Fitopatologia Brasileira, 28, 615–619.

    Article  Google Scholar 

  • Bettiol, W., Pinto, Z. V., Silva, J. C., Forner, C., Faria, M. R., Pacifico, M. G., & Costa, L. S. A. S. (2019). Produtos comerciais à base de Trichoderma. In M. C. Meyer, S. M. Mazaro, & J. C. Silva (Eds.), Trichoderma: uso na agricultura (pp. 45–160). Embrapa.

    Google Scholar 

  • Bisen, K., Keswani, C., Patel, J. S., Sarma, B. K., & Singh, H. B. (2016). Trichoderma spp.: Efficient inducers of systemic resistance in plants. Microbial-mediated induced systemic resistance in plants (pp. 185–195).

  • Bononi, L., Chiaramonte, J. B., Pansa, C. C., Moitinho, M. A., & Melo, I. S. (2020). Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Scientific Reports, 10, 2858. https://doi.org/10.1038/s41598-020-59793-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canteri, M. G., Althaus, R. A., Virgens Filho, J. S., Giglioti, E. A., & Godoy, C. V. (2001). SASM - Agri: Sistema para análise e separação de médias em experimentos agrícolas pelos métodos Scoft - Knott, Tukey e Duncan. Revista Brasileira de Agrocomputação, 1, 18–24.

    Google Scholar 

  • Carvalho, D. D. C., Mello, S. C. M., Lobo Júnior, M., & Silva, M. C. (2011a). Controle de Fusarium oxysporum f.sp. phaseoli in vitro e em sementes, e promoção do crescimento inicial do feijoeiro comum por Trichoderma harzianum. Tropical Plant Pathology, 36(1), 028–034.

    Article  Google Scholar 

  • Carvalho, D. D. C., Mello, S. C. M., Lobo Júnior, M., & Geraldine, A. M. (2011b). Biocontrol of seed pathogens and growth promotion of common bean seedlings by Trichoderma harzianum. Pesquisa Agropecuária Brasileira, 46, 822–828.

    Article  Google Scholar 

  • Carvalho, D. D. C., Mello, S. C. M., Martins, I., Júnior, L., & M. (2015). Biological control of fusarium wilt on common beans by in-furrow application of Trichoderma harzianum. Tropical Plant Pathology, 40, 375–381.

    Article  Google Scholar 

  • Cavalcanti, F. J. A. (1998). Recomendações de adubação para o estado de Pernambuco: 2a aproximação. 2 ed. rev. IPA.

  • Chagas, L. F. B., De Castro, H. G., Colonia, B. S. O., Carvalho Filho, M. R., Miller, L. O., & Chagas, A. F. J. (2016). Efficiency of Trichoderma spp. as a growth promoter of cowpea (Vigna unguiculata) and analysis of phosphate solubilization and indole acetic acid synthesis. Brazilian Journal of Botany, 39, 437–445. https://doi.org/10.1007/s40415-015-0247-6

    Article  Google Scholar 

  • CONAB. (2019). Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de grãos. Retrieved February 16, 2020, from https://www.conab.gov.br/info-agro/safras/graos.

  • Costa, A. F., Oliveira, L. G., Souza, M. C. M., Leite, N. G. A., & Canuto, V. T. B. (2019). Melhoramento do feijão-caupi para o Semiárido brasileiro: situação atual e perspectivas. In L. F. Ximenes, M. S. L. Silva, & L. T. L. Brito (Eds.), Tecnologias de Convivência com o semiárido brasileiro (pp. 747–808). Banco do Nordeste do Brasil.

    Google Scholar 

  • Dennis, C., & Webster, J. (1971). Antagonistic properties of species groups of Trichoderma: III – Hyphal interactions. Transactions of the British Mycological Society, 57, 363–369.

    Article  Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eloy, A. P., Michereff, S. J., Nascimento, C. W. A., Laranjeira, D., & Borges, M. A. S. (2004). Natureza da supressividade de solo à murcha-de-fusário do caupi e dinâmica populacional de Fusarium oxysporum f. sp. tracheiphilum. Summa Phytopathologica, 30, 209–218.

    Google Scholar 

  • Embrapa. (1979). Serviço Nacional de Levantamento e Conservação de Solos (Rio de Janeiro, RJ). Manual de métodos de análise de solo.

  • Embrapa. (1997). Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. Centro Nacional de Pesquisa de Solos – CNPS, 212p. (Embrapa-CNPS. Documentos, 1).

  • Ferrigo, D., Raiola, A., Rasera, R., & Causin, R. (2014). Trichoderma harzianum seed treatment controls fusarium verticillioides colonization and fumonisin contamination in maize under field conditions. Crop Protection, 65, 51–56.

    Article  Google Scholar 

  • Figueiredo, G. S., Figueiredo, L. C., Cavalcanti, F. C. N., Santos, A. C., Costa, A. F., & Oliveira, N. T. (2010). Biological and chemical control of Sclerotinia sclerotiorum using Trichoderma spp. and Ulocladiumatrum and pathogenicity to bean plants. Brazilian Archives of Biology and Technology, 53, 1–9.

    Article  Google Scholar 

  • Filizola, H. F., Gomes, M. A. F., & Souza, M. D. (2006). Manual de procedimentos de coleta de amostras em áreas agrícolas para análise da qualidade ambiental: solo, água e sedimentos. Embrapa Meio Ambiente.

    Google Scholar 

  • Ghanbarzadeh, B., Safaie, N., & Goltapeh, E. M. (2014). Antagonistic activity and hyphal interactions of Trichoderma spp. against fusarium proliferatum and F. oxysporum in vitro. Archives of Phytopathology and Plant Protection, 47(16), 1979–1987.

    Article  Google Scholar 

  • Gomes, E. V., Costa, M. N., de Paula, R. G., et al. (2015). The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection. Scientific Reports, 5, 17998. https://doi.org/10.1038/srep17998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon, T. R. (2017). Fusarium oxysporum and the fusarium wilt syndrome. Annual Review of Phytopathology, 55, 23–39.

    Article  CAS  PubMed  Google Scholar 

  • Haddad, P. E., Leite, L. G., Lucon, C. M. M., & Harakava, R. (2017). Selection of Trichoderma spp. strains for the control of Sclerotinia sclerotiorum in soybean. Pesquisa Agropecuária Brasileira, 52(12), 1140–1148.

    Article  Google Scholar 

  • Halifu, S., Deng, X., Song, X., Song, R., & Liang, X. (2020). Inhibitory mechanism of Trichoderma virens ZT05 on Rhizoctonia solani. Plants, 9, 912.

    Article  CAS  PubMed Central  Google Scholar 

  • Jangir, P., Mehra, N., Sharma, K., Singh, N., Rani, M., & Kapoor, R. (2021). Secreted in xylem genes: Drivers of host adaptation in fusarium oxysporum. Frontiers in Plant Science, 12, 628611. https://doi.org/10.3389/fpls.2021.628611

    Article  PubMed  PubMed Central  Google Scholar 

  • Khaledi, N., & Taheri, P. (2016). Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina. Journal of Plant Protection Research, 56(1), 21–31.

    Article  CAS  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2015). MEGA7: Molecular evolutionary genetics analysis version 7.0. Molecular Biology and Evolution, 33(7), 1870–1874.

    Article  CAS  Google Scholar 

  • Leslie, J. F., & Summerell, B. A. (2006). The fusarium laboratory manual. Blackwell Publishing.

    Book  Google Scholar 

  • Li, Y. T., Hwang, S. G., Huang, Y. M., & Huang, C. H. (2018). Effects of Trichoderma asperellum on nutrient uptake and fusarium wilt of tomato. Crop Protection, 110, 275–282.

    Article  CAS  Google Scholar 

  • Li, M. F., Li, G. H., & Zhang, K. Q. (2019). Non-volatile metabolites from Trichoderma spp. Metabolites, 9(3), 58. https://doi.org/10.3390/metabo9030058

    Article  CAS  PubMed Central  Google Scholar 

  • Lima, C. S. (2017). Manejo de doenças. In J. C. Do Vale, C. Bertini, & A. Borém (Eds.), Feijão-caupi: do plantio a colheita. UFV.

    Google Scholar 

  • Liu, Y. J., Whelen, S., & Hall, B. D. (1999). Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Molecular Biology and Evolution, 16, 1799–1808.

    Article  CAS  PubMed  Google Scholar 

  • Lombard, L., Sandoval-Denis, M., Lamprecht, S. C., & Crous, P. W. (2019). Epitypification of fusarium oxysporum – Clearing the taxonomic chãos. Persoonia, 43, 1–47. https://doi.org/10.3767/persoonia.2019.43.01

    Article  CAS  PubMed  Google Scholar 

  • López-Bucio, J., Pelagio-Flores, R., & Herrera-Estrella, A. (2015). Trichoderma as biostimulant: Exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae, 196, 109–123.

    Article  Google Scholar 

  • Martínez, F. D., Santos, M., Carretero, F., & Marín, F. (2015). Trichoderma saturnisporum, a new biological control agent. Journal of the Science of Food and Agriculture, 96(6), 1934–1944. https://doi.org/10.1002/jsfa.7301

    Article  CAS  Google Scholar 

  • Maryani, N., Lombard, L., Poerba, Y. S., Subandiyah, S., Crous, P. W., & Kema, G. H. J. (2019). Phylogeny and genetic diversity of the banana fusarium wilt pathogen fusarium oxysporum f. sp. cubense in the Indonesian Centre of origin. Studies in Mycology, 92, 155–194.

    Article  CAS  PubMed  Google Scholar 

  • Mendes, J. B. S., Costa Neto, V. P., Sousa, C. D. A., Carvalho Filho, M. R., Rodrigues, A. C., & Bonifacio, A. (2020). Trichoderma and bradyrhizobia act synergistically and enhance the growth rate, biomass and photosynthetic pigments of cowpea (Vigna unguiculata) grown in controlled conditions. Symbiosis, 80, 133–143. https://doi.org/10.1007/s13199-019-00662-y

    Article  CAS  Google Scholar 

  • Mendoza, J. L. H., Pérez, M. I. S., Prieto, J. M. G., Velásquez, J. D. Q., Olivares, J. G. G., & Langarica, H. R. G. (2015). Antibiosis of Trichoderma spp strains native to northeastern Mexico against the pathogenic fungus Macrophomina phaseolina. Brazilian Journal of Microbiology, 46(4), 1093–1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menezes, M., Machado, A. L. M., Silveira, M. C. V., & Silva, R. L. X. (2004). Biocontrole de Macrophomina phaseolina com espécies de Trichoderma aplicadas no tratamento de sementes de feijão e no solo. Anais da Academia Pernambucana de Ciência Agronômica, 1, 133–140.

    Google Scholar 

  • Meyer, M. C., Mazaro, S. M., & Silva, J. C. (2019). Trichoderma: uso na agricultura. Embrapa.

    Google Scholar 

  • Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA (pp. 1–8).

    Google Scholar 

  • Moya, P., Barrera, V., Cipollone, J., Bedoya, C., Kohan, L., Toledo, A., & Sisterna, M. (2020). New isolates of Trichoderma spp. as biocontrol and plant growth–promoting agents in the pathosystem Pyrenophorateres-barley in Argentina. Biological Control, 141, 104152.

    Article  CAS  Google Scholar 

  • Nuangmek, W., Mckenzie, E. H. C., & Lumyong, S. (2008). Endophytic Fungi from wild banana (Musa acuminata Colla) works against anthracnose disease caused by Colletotricum muse. Research Journal of Microbiology, 3, 368–374.

    Article  Google Scholar 

  • O’Donnell, K., Kistler, H. C., Cigelnik, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 95(5), 2044–2049.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Donnell, K., Gueidan, C., Sink, S., Johnston, P. R., Crous, P. W., Glenn, A., Riley, R., Zitomer, N. C., Colyer, P., Waalwijk, C., van der Lee, T., Moretti, A., Kang, S., Kim, H.-S., Geiser, D. M., Juba, J. H., Baayen, R. P., Cromey, M. G., Bithell, S., et al. (2009). A two-locus DNA sequence database for typing plant and human pathogens within the fusarium oxysporum species complex. Fungal Genetics and Biology, 46, 936–948.

    Article  PubMed  CAS  Google Scholar 

  • Pastor-Corrales, M. A., & Abawi, G. S. (1987). Reactions of selected bean germplasms to infection by fusarium oxysporum f. sp. phaseoli. Plant Disease, 71, 990–993.

    Article  Google Scholar 

  • Pedro, E. A. S., Harakava, R., Lucon, C. M. M., & Guzzo, S. D. (2012). Promoção do crescimento do feijoeiro e controle da antracnose por Trichoderma spp. Pesquisa Agropecuária Brasileira, 47, 1589–1595.

    Article  Google Scholar 

  • Pimentel, M. F., Arnão, E., Warner, A. J., Subedi, A., Rocha, L. F., Srour, A., Bond, J. P., & J. P., & Fakhoury, A. M. (2020). Trichoderma isolates inhibit fusarium virguliforme growth, reduce root rot, and induce defense-related genes on soybean seedlings. Plant Disease, 104, 1949–1959.

    Article  CAS  PubMed  Google Scholar 

  • Pio-Ribeiro, G., & Assis Filho, F. M. (1997). Doenças do caupi (Vigna unguiculata (L.) Walp.). In H. Kimati, L. Amorim, J. A. M. Rezende, A. Bergamin Filho, & L. E. A. Camargo (Eds.), Manual de fitopatologia: doenças das plantas cultivadas (pp. 222–231). Agronômica Ceres.

    Google Scholar 

  • Posada, D., & Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology, 53, 793–808.

    Article  PubMed  Google Scholar 

  • Pottorff, M., Wanamaker, S., Ma, Y. Q., Ehlers, J. D., Roberts, P. A., & Close, T. J. (2012). Genetic and physical mapping of candidate genes for resistance to fusarium oxysporum f.sp. tracheiphilum race 3 in cowpea [Vigna unguiculata (L.) Walp]. PLoS ONE, 7(7), e41600. https://doi.org/10.1371/journal.pone.0041600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rambaut, A. (2009). FigTree 1.2.2. Available at: http://tree.bio.ed.ac.uk/software/figtree. Accessed February 2020.

  • Rannala, B., & Yang, Z. (1996). Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of Molecular Evolution, 43, 304–311.

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Méndez, W., Obregón, M., Morán-Diez, M. E., Hermosa, R., & Monte, E. (2020). Trichoderma asperellum biocontrol activity and induction of systemic defenses against Sclerotium cepivorum in onion plants under tropical climate conditions. Biological Control, 141, 104145. https://doi.org/10.1016/j.biocontrol.2019.104145

    Article  CAS  Google Scholar 

  • Ronquist, F., & Heulsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  • Sallam, N. M. A., Eraky, A. M. I., & Sallam, A. (2019). Effect of Trichoderma spp. on fusarium wilt disease of tomato. Molecular Biology Reports, 46, 4463–4470. https://doi.org/10.1007/s11033-019-04901-9

    Article  CAS  PubMed  Google Scholar 

  • Santos, A. C. S., Trindade, J. V. C., Lima, C. S., Barbosa, R. N., Costa, A. F., Tiago, P. V., & Oliveira, N. (2019). Morphology, phylogeny, and sexual stage of and, new species of the species complex associated with insects in Brazil. Mycologia, 111, 1–16.

    Article  CAS  Google Scholar 

  • Sawant, I. S., Wadkar, P. N., Ghule, S. B., Salunkhe, V. P., Chavan, V., & Sawant, S. D. (2020). Induction of systemic resistance in grapevines against powdery mildew by Trichoderma asperelloides strains. Australasian Plant Pathology, 49, 107–117. https://doi.org/10.1007/s13313-020-00679-8

    Article  CAS  Google Scholar 

  • Schoonhoven, A. V., & Pastor-Corrales, M. A. (1987). Standard system for the evaluation of bean germplasm (53P). CIAT.

    Google Scholar 

  • Silva, R. N., Monteiro, V. N., Steindorff, A. S., Gomes, E. V., Noronha, E. F., & Ulhoa, C. J. (2019). Trichoderma/pathogen/plant interaction in pre-harvest food security. Fungal Biology, 123(8), 565–583. https://doi.org/10.1016/j.funbio.2019.06.010

    Article  PubMed  Google Scholar 

  • Silva, H. F., Santos, A. M. G., Amaral, A. C. T., Bezerra, J. L., & Luz, E. D. M. N. (2020). Bioprospection of Trichoderma spp. originating from a Cerrado-Caatinga ecotone on Colletotrichum truncatum, in soybean. Revista Brasileira de Ciências Agrárias, 15(1), e7680.

    Google Scholar 

  • Sung, G. H., Sung, J. M., Hywel-Jones, N. L., & Spatafora, J. W. (2007). A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution, 44, 1204–1223.

    Article  CAS  PubMed  Google Scholar 

  • Veenstra, A., Rafudeen, M., & Murray, S. L. (2019). Trichoderma asperellum isolated from African maize seed directly inhibits Fusarium verticillioides growth in vitro. European Journal of Plant Pathology, 153, 279–283. https://doi.org/10.1007/s10658-018-1530-8

    Article  Google Scholar 

  • Wonglom, P., Ito, S., & Sunpapao, A. (2020). Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response and promote plant growth in lettuce (Lactuca sativa). Fungal Ecology, 43, 100867. https://doi.org/10.1016/j.funeco.2019.100867

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the grant awarded to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cláudia Tenório do Amaral.

Ethics declarations

Ethical statement

No studies were conducted involving human and/ or animal participants.

Ethics approval

All authors contributed and declare that the manuscript was not submitted or previously published.

Conflict of interest

There is no conflict of interest between authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Amaral, A.C.T., de Holanda Cavalcanti Maciel, M., Machado, A.R. et al. Trichoderma as a biological agent of Fusarium oxysporum species complex and Vigna unguiculata growth promoter. Eur J Plant Pathol 163, 875–890 (2022). https://doi.org/10.1007/s10658-022-02526-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-022-02526-6

Keywords

Navigation