Skip to main content
Log in

Trichoderma asperellum isolated from African maize seed directly inhibits Fusarium verticillioides growth in vitro

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Maize is a globally important crop that is affected by fungal diseases causing yield losses annually. One fungus, Fusarium verticillioides, causes the disease Fusarium Ear Rot (FER), which reduces grain quality and produces mycotoxins called fumonisins that are harmful to animals and humans. As chemical fungicides are expensive and have negative environmental effects, the use of biological control agents (BCAs) has become favourable in recent years. A commonly used fungal BCA is Trichoderma spp., which has been effective in reducing disease incidence as well as enhancing crop growth. In this study, T. asperellum was isolated from an African maize line and was shown to significantly inhibit growth of F. verticillioides in an in vitro competition assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7(4), 249–260.

    PubMed  Google Scholar 

  • Chandra Nayaka, S., Niranjana, S. R., Uday Shankar, A. C., Niranjan Raj, S., Reddy, M. S., Prakash, H. S., & Mortensen, C. N. (2010). Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize. Archives of Phytopathology and Plant Protection, 43(3), 264–282. https://doi.org/10.1080/03235400701803879.

    Article  Google Scholar 

  • Charoenrak, P., & Chamswarng, C. (2016). Efficacies of wettable pellet and fresh culture of Trichoderma asperellum biocontrol products in growth promoting and reducing dirty panicles of rice. Agriculture and Natural Resources, 50(4), 243–249. https://doi.org/10.1016/j.anres.2016.04.001.

    Article  CAS  Google Scholar 

  • Chen, L.-H., Zhang, J., Shao, X.-H., Wang, S.-S., Miao, Q.-S., Mao, X.-Y., et al. (2015). Development and evaluation of Trichoderma asperellum preparation for control of sheath blight of rice (Oryza sativa L.). Biocontrol Science and Technology, 25(3), 316–328. https://doi.org/10.1080/09583157.2014.977225.

    Article  Google Scholar 

  • Colombo, C., Palumbo, G., He, J.-Z., Pinton, R., & Cesco, S. (2014). Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. Journal of Soils and Sediments, 14(3), 538–548. https://doi.org/10.1007/s11368-013-0814-z.

    Article  CAS  Google Scholar 

  • de França, S. K. S., Cardoso, A. F., Lustosa, D. C., Ramos, E. M. L. S., de Filippi, M. C. C., & da Silva, G. B. (2015). Biocontrol of sheath blight by Trichoderma asperellum in tropical lowland rice. Agronomy for Sustainable Development, 35(1), 317–324. https://doi.org/10.1007/s13593-014-0244-3.

    Article  Google Scholar 

  • El Komy, M. H., Saleh, A. A., Eranthodi, A., & Molan, Y. Y. (2015). Characterization of Novel Trichoderma asperellum Isolates to Select Effective Biocontrol Agents Against Tomato Fusarium Wilt. The Plant Pathology Journal, 31(1), 50–60. https://doi.org/10.5423/PPJ.OA.09.2014.0087.

    Article  PubMed  Google Scholar 

  • Harman, G. E., Petzoldt, R., Comis, A., & Chen, J. (2004a). Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology, 94(2), 147–153.

    Article  PubMed  Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004b). Trichoderma species — opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43–56. https://doi.org/10.1038/nrmicro797.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, L. R., Colvin, B. M., Greene, J. T., Newman, L. E., & Cole Jr., J. R. (1990). Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme. Journal of Veterinary Diagnostic Investigation, 2(3), 217–221.

    Article  CAS  PubMed  Google Scholar 

  • Heydari, A., & Pessarakli, M. (2010). A Review on Biological Control of Fungal Plant Pathogens Using Microbial Antagonists. Journal of Biological Sciences, 10(4), 273–290.

    Article  Google Scholar 

  • Korsman, J., Meisel, B., Kloppers R. J., Crampton, B. G., & Berger, D. K. (2012). Quantitative phenotyping of grey leaf spot disease in maize using real-time PCR. European Journal of Plant Pathology, 133(2), 461–471.

    Article  CAS  Google Scholar 

  • Leelavathi, M. S., Vani, L., & Reena, P. (2014). Antimicrobial activity of Trichoderma harzianum against bacteria and fungi. International Journal of Current Microbiology and Applied Sciences, 3, 96–103.

    Google Scholar 

  • Luongo, L., Galli, M., Corazza, L., Meekes, E., Haas, L. D., Van Der Plas, C. L., & Köhl, J. (2005). Potential of fungal antagonists for biocontrol of Fusarium spp. in wheat and maize through competition in crop debris. Biocontrol Science and Technology, 15(3), 229–242. https://doi.org/10.1080/09583150400016852.

    Article  Google Scholar 

  • Saravanakumar, K., Li, Y., Yu, C., Wang, Q., Wang, M., Sun, J., et al. (2017). Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-01680-w.

  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobowale, A. A., Cardwell, K. F., Odebode, A. C., Bandyopadhyay, R., & Jonathan, S. G. (2005). Growth inhibition of Fusarium verticillioides (Sacc.) Nirenberg by isolates of Trichoderma pseudokoningii strains from maize plant parts and its rhizosphere. Journal of Plant Protection Research, 45(4), 249–266.

    Google Scholar 

  • Sobowale, A. A., Odebode, A. C., Cardwell, K. F., Bandyopadhyay, R., & Jonathan, S. G. (2010). Antagonistic potential of Trichoderma longibrachiatum and T. hamatum resident on maize (Zea mays) plant against Fusarium verticillioides (Nirenberg) isolated from rotting maize stem. Archives of Phytopathology and Plant Protection, 43(8), 744–753. https://doi.org/10.1080/03235400802175904.

    Article  CAS  Google Scholar 

  • Steyaert, J. M., Weld, R. J., & Stewart, A. (2010). Isolate-specific conidiation in Trichoderma in response to different nitrogen sources. Fungal Biology, 114(2–3), 179–188. https://doi.org/10.1016/j.funbio.2009.12.002.

    Article  PubMed  Google Scholar 

  • Strange, R. N., & Scott, P. R. (2005). Plant Disease: A Threat to Global Food Security. Annual Review of Phytopathology, 43(1), 83–116. https://doi.org/10.1146/annurev.phyto.43.113004.133839.

    Article  CAS  PubMed  Google Scholar 

  • Sun, G., Wang, S., Hu, X., Su, J., Huang, T., Yu, J., et al. (2007). Fumonisin B1 contamination of home-grown corn in high-risk areas for esophageal and liver cancer in China. Food Additives and Contaminants, 24(2), 181–185. https://doi.org/10.1080/02652030601013471.

    Article  CAS  PubMed  Google Scholar 

  • Sydenham, E. W., Thiel, P. G., Marasas, W. F., Shephard, G. S., Van Schalkwyk, D. J., & Koch, K. R. (1990). Natural occurrence of some Fusarium mycotoxins in corn from low and high esophageal cancer prevalence areas of the Transkei, Southern Africa. Journal of Agricultural and Food Chemistry, 38(10), 1900–1903.

  • Thiel, P. G., Marasas, W. F., Sydenham, E. W., Shephard, G. S., & Gelderblom, W. C. (1992). The implications of naturally occurring levels of fumonisins in corn for human and animal health. Mycopathologia, 117(1–2), 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Tucci, M., Ruocco, M., De Masi, L., De Palma, M., & Lorito, M. (2011). The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype: Plant genotype-Trichoderma interaction. Molecular Plant Pathology, 12(4), 341–354. https://doi.org/10.1111/j.1364-3703.2010.00674.x.

    Article  CAS  PubMed  Google Scholar 

  • Veenstra, A. L. (2017). Evaluation of southern African maize germplasm for phytoalexin accumulation following inoculation by Fusarium verticillioides (Master of Science thesis). University of Cape Town, Cape Town.

  • Vos, C. M. F., De Cremer, K., Cammue, B. P. A., & De Coninck, B. (2015). The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease: Trichoderma biocontrol of Botrytis cinerea disease. Molecular Plant Pathology, 16(4), 400–412. https://doi.org/10.1111/mpp.12189.

  • Wagacha, J. M., & Muthomi, J. W. (2008). Mycotoxin problem in Africa: Current status, implications to food safety and health and possible management strategies. International Journal of Food Microbiology, 124(1), 1–12. https://doi.org/10.1016/j.ijfoodmicro.2008.01.008.

    Article  CAS  PubMed  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications, 18(1), 315–322.

    Google Scholar 

Download references

Acknowledgements

This study was funded in South Africa by The Maize Trust and the National Research Foundation. We would like to thank Jean Ntuli for providing seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane L. Murray.

Ethics declarations

This research did not involve human participants and/or animals.

Conflict of interests

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veenstra, A., Rafudeen, M. & Murray, S.L. Trichoderma asperellum isolated from African maize seed directly inhibits Fusarium verticillioides growth in vitro. Eur J Plant Pathol 153, 279–283 (2019). https://doi.org/10.1007/s10658-018-1530-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1530-8

Keywords

Navigation