Skip to main content
Log in

Fungal contamination and mycotoxins associated with sorghum crop: its relevance today

  • Reviews
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Sorghum grain is the fifth most produced cereal in the world. The dietary ingestion of sorghum along with other cereals is a way to take advantage of the grain’s numerous benefits for human health. However, sorghum is now threatened by several fungal diseases that reduced crop yields and quality with substantial economic losses. Numerous fungal genera have been associated with the contamination of sorghum grains collected from different countries around the world, including the main mycotoxigenic genera. The main fungi that infect sorghum grains belong to Aspergillus and Fusarium genera, associated with the production of aflatoxins, fumonisins, zeralenone and deoxynivalenol, being the aflatoxins the main risk in this crop. Sorghum, unlike other cereals, does not yet have legislation that regulates the maximum content of mycotoxins in grains for its commercialization. As mycotoxins in food and feed are one of the main food safety problems worldwide, this work provides an in-depth examination into the occurrence of mycoflora and mycotoxins in sorghum. The current data compilation highlights the imperative need for sorghum-producing countries to strengthen surveillance and increase grain inspections to ensure the safety of this crop for human consumption as well as the need to establish regulations for mycotoxins or groups of mycotoxins in sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdulkadar, A. H. W., AlAli, A., & Al-Jedah, J. (2000). Aflatoxin contamination in edible nuts imported in Qatar. Food Control, 11, 157–160.

    CAS  Google Scholar 

  • Abdulsalaam, S., & Shenge, K. C. (2011). Seed borne pathogens on farmer-saved sorghum (Sorghum bicolor L.) seeds. Journal of Stored Products and Postharvest Research, 2, 24–28.

    Google Scholar 

  • Althwab, S., Carr, T. P., Weller, C. L., Dweikat, I. M., & Schlegel, V. (2015). Review: Advances in grain sorghum and its co-products as a human health promoting dietary system. Food Research International, 77, 349–359.

    CAS  Google Scholar 

  • Apeh, D. O., Ochai, D. O., Adejumo, A., Muhammad, H. L., Saidu, A. N., Atehnkeng, J., Adeyemi, R. H., Mailafiya, S. C., & Makun, H. A. (2016). Mycotoxicological concerns with Sorghum, millet and sesame in northern Nigeria. Journal of Analytical and Bioanalytical Techniques, 7, 336.

    Google Scholar 

  • Asam, S., & Rychlik, M. (2013). Potential health hazards due to the occurrence of the mycotoxin tenuazonic acid in infant food. European Food Research and Technology, 236, 491–497.

    CAS  Google Scholar 

  • Awika, J. M., & Rooney, L. W. (2004). Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 65, 1199–1221.

    CAS  PubMed  Google Scholar 

  • Ayalew, A., Fehrmann, H., Lepschy, J., Beck, R., & Abate, D. (2006). Natural occurrence of mycotoxins in staple cereals from Ethiopia. Mycopathologia, 162, 57–63.

    CAS  PubMed  Google Scholar 

  • Castor, L. L., & Frederiksen, R. A. (1980). Fusarium head blight occurrence and effects on sorghum yield and grain characteristics in Texas. Plant Disease, 64, 1017–1019.

    Google Scholar 

  • Chala, A., Taye, W., Ayalew, A., Krska, R., Sulyok, M., & Logrieco, A. (2014). Multimycotoxin analysis of sorghum (Sorghum bicolor L. Moench) and finger millet (Eleusinecoracana L. Garten) from Ethiopia. Food Control, 45, 29–35.

    CAS  Google Scholar 

  • Cheraghali, A. M., Yazdanpanah, H., Doraki, N., Abouhossain, G., & Hassibi, M. (2007). Incidence of aflatoxins in Iran pistachio nuts. Food Chemistry & Toxicology, 45, 812–816.

    CAS  Google Scholar 

  • Clayton, W. D., & Renvoize, S. A. (1986). Genera graminum grasses of the world. In Kew bulletin addition series (Vol. XIII, pp. 338–345). Kew: Royal Botanic Gardens.

    Google Scholar 

  • Codex Committee on Contaminants in Foods (CCCF) (2012). Discussion paper on fungi and mycotoxins in sorghum. Sixth Session Maastricht, the Netherlands, 26–30 March 2012, Agenda item 9 (CX/CF 12/6/14).

  • Council for Agricultural Science and Technology (CAST) (2013). Mycotoxins: Risks in plant, animal, and human systems. Vol 139, Ames, Iowa.

  • Da Silva, J. B., Pozzi, C. R., Mallozzi, M. A. B., Ortega, E. M., & Correa, B. (2000). Mycoflora and occurrence of aflatoxin B1 and fumonisin B1 during storage of Brazilian sorghum. Journal of Agricultural and Food Chemistry, 48, 4352–4356.

    PubMed  Google Scholar 

  • del Palacio, A., Mionetto, A., Bettucci, L., & Pan, D. (2016). Evolution of fungal population and mycotoxins in sorghum silage. Food Additives & Contaminants: Part A, 33, 1864–1872.

    Google Scholar 

  • Diener, U. L., Morgan-Jones, G., Wagener, R. E., & Davis, N. D. (1981). Toxigenicity of fungi from grain sorghum. Mycopathologia, 75, 23–26.

    CAS  PubMed  Google Scholar 

  • Divakara, S. T., Santosh, P., Aiyaz, M., Ramana, M. V., Hariprasas, P., Nayaka, S. C., & Niranjana, S. R. (2013). Molecular identification and characterization of Fusarium spp. associated with sorghum seeds. Journal of the Science of Food and Agriculture, 94, 1132–1139.

    PubMed  Google Scholar 

  • dos Reis, T. A., Zorzete, P., Rodrigues Pozzi, C., da Silva, V. N., Ortega, E., & Correa, B. (2010). Mycoflora and fumonisin contamination in Brazilian sorghum from sowing to harvest. Journal of Science and Food Agriculture, 90, 1445–1451.

    Google Scholar 

  • Ediage, E. N., Van Poucke, C., & De Saeger, S. (2015). A multi-analyte LC-MS/MS method for the analysis of 23 mycotoxins in different sorghum varieties: The forgotten sample matrix. Food Chemistry, 177, 397–404.

    Google Scholar 

  • Elbashir, A. A., & Ali, S. E. A. (2014). Aflatoxins, ochratoxins and zearalenone in sorghum and sorghum products in Sudan. Food Additives and Contaminants, 7, 135–140.

    CAS  PubMed  Google Scholar 

  • Elegbede, J. A., West, C. E., & Audu, A. A. (1982). Fungal and mycotoxin contamination of sorghum during storage in northern Nigeria. Microbiology Letters, 19, 77–83.

    Google Scholar 

  • European Commission (EC). (2006). Commission regulation (EC) N° 1881/2006 of 19 December 2006 – Setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union, L364, 5–24.

    Google Scholar 

  • European Commission (EC). (2007). Commission regulation (EC) N° 1126/2007 on maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Official Journal of the European Union, 255, 14–17.

    Google Scholar 

  • European Commission (EC). (2010). Commission regulation (EU) N° 165/2010 of 26 February 2010 amending regulation (EC) N° 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. Official Journal of the European Union, L50, 8–12.

    Google Scholar 

  • Fakhrunnisa, M. H. H., & Ghaffar, A. (2006). Seed-borne mycoflora of wheat, sorghum and barley. Pakistan Journal of Botany, 38, 185–192.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2004). Worldwide regulations for mycotoxins in food and feed in 2003.Food and nutrition paper 81. Rome, Italy, 35 pp.

  • Garba, M. H., Makun, H. A., Jigam, A. A., Hadiza, L. M., Patrick, B. N., & Kabiru, A. Y. (2017). Viability of fungal spores isolated from sorghum grains sampled from the field, market and different storage facilities in the six agro-ecological zones of Nigeria. Microbiology Research Journal International, 20, 1–11.

    Google Scholar 

  • Garcia Aguirre, G., & Martinez Flores, R. (1991). Mycological analysis of grains of sweet sorghum. Revista Mexicana Micología, 7, 129–138.

    Google Scholar 

  • Ghali, R., Khlifa, K. H., Ghorbel, H., Maaroufi, K., & Hedilli, A. (2008). Incidence of aflatoxins, ochratoxin a and zearalenone in Tunisian foods. Food Control, 19, 921–924.

    CAS  Google Scholar 

  • Ghali, R., Belouaer, I., Hdiri, S., Ghorbel, H., Maaroufi, K., & Hedilli, A. (2009). Simultaneous HPLC determination of aflatoxins B1, B2, G1 and G2 in Tunisian sorghum and pistachios. Journal of Food Composition and Analysis, 22, 751–755.

    CAS  Google Scholar 

  • Gonzalez, H. H. L., Martinez, E. J., & Resnik, S. L. (1997). Fungi associated with sorghum grain from Argentina. Mycopathologia, 139, 35–41.

    CAS  PubMed  Google Scholar 

  • Gupta R.C., Mostrom M.S., & Evans T.J. (2018). Chapter 76: Zearalenone. In: Veterinary toxicology (third edition), basic and clinical principles, pp. 1055-1063.

  • Hansen, J., Marchant, M.A., Zhang, W., & Grant, J. (2018). Upheaval in China’s imports of U.S. Sorghum. A publication of the Agricultural and Applied Economics Association, 33.

  • Health Surveillance Agency for Brazil (ANVISA) (2011). Brazilian Sanitary Surveillance Agency: Resolução n° 7, de 18 de fevereiro de 2011.

  • Huerta-Trevino, A., Davila-Avina, J., Sánchez, E., Heredia, N., & García, S. (2016). Occurrence of mycotoxins in alfalfa (Medicago sativa L.), sorghum [Sorghum bicolor (L.) Moench], and grass (Cenchrusciliaris L.) retailed in the state of Nuevo Leon, México. Agrociencia, 50, 825–836.

    Google Scholar 

  • Hussaini, A., Gbodi, T., Akanya, O. H., Salako, A. E., & Ogbadu Godwin, H. (2009). Fungi and some mycotoxins found in mouldy sorghum in Niger state, Nigeria. World Journal of Agricultural Research, 5, 5–17.

    CAS  Google Scholar 

  • Ibrahim, T. F., El-Abedeen, A. Z., El-Morsy, G. A., & El-Azhary, T. M. (1998). Aflatoxins in Egyptian sorghum grains: Detection and estimation. Egyptian Journal of Agricultural Research, 76, 923–931.

    Google Scholar 

  • International Agency for Research on Cancer (IARC). (2002). Some traditional herbal medicines, some mycotoxins, naphthalene and styrene (Vol. 82). Lyon: IARC.

    Google Scholar 

  • Iqbal, S. Z., Jinap, S., Pirouz, A. A., & Ahmad Faizal, A. R. (2015). Aflatoxin M1 in milk and dairy products, occurrence and recent challenges: A review. Trends in Food Science and Technology, 46, 110–119.

    CAS  Google Scholar 

  • Islam, S. M. M., Masum, M. M. I., & Fakir, M. G. A. (2009). Prevalence of seed-borne fungi in sorghum of different locations of Bangladesh. Science Research and Essays, 4, 175–179.

    Google Scholar 

  • Jidda, M. B., & Anaso, A. B. (2014). Mycoflora associated with Masakwa sorghum (Sorghum bicolor L. Moench) in the north eastern part of Nigeria. Journal of Stored Products and Postharvest Research, 5, 20–25.

    Google Scholar 

  • Kange, A. M., Cheruiyot, E. K., Ogendo, J. O., & Peter, F. (2015). Effect of sorghum [Sorghum bicolor (L.) Moench] grain conditions on occurrence of mycotoxin-producing fungi. Agriculture and Food Security, 4, 15–23.

    Google Scholar 

  • Keller, L.A.M., Keller, K.M., Monge, M.P, Pereyra, C.M., Alonso, V.A., Cavaglieri, L.R., Chiacchiera, S.M., & Rosa, C.A.R. (2012). Gliotoxin contamination in and pre- and postfermented corn, sorghum and wet brewer’s grains silage in Sao Paulo and Rio de Janeiro state, Brazil. Journal of Applied Microbiology, 112, 865–873.

  • Kumar, S. L., Daodu, M. A., Shetty, H. S., & Malleshi, N. G. (1992). Seed mycoflora and malting characteristics of some sorghum cultivars. Journal of Cereal Science, 15, 203–209.

    Google Scholar 

  • Lahouar, A., Crespo-Sempere, A., Marín, S., Saïd, S., & Sanchis, V. (2015). Toxigenic molds in Tunisian and Egyptian sorghum for human consumption. Journal of Stored Products Research, 63, 57–62.

    Google Scholar 

  • Lincy, S. V., Chandrashekar, A., Sharma, R., & Thakur, R. P. (2011). Natural occurrence of trichothecene-producing fusaria isolated from India with particular reference to sorghum. World Journal of Microbiology and Biotechnology, 27, 981–989.

    Google Scholar 

  • Lutfullah, G., & Hussain, A. (2012). Studies on contamination level of aflatoxins in some cereals and beans of Pakistan Ghosia. Food Control, 23, 32–36.

    CAS  Google Scholar 

  • Mamiro, D. P., & Clement, G. (2014). Effect of sources and storage conditions on quality of sorghum seeds. Tanzania Journal of Agricultural Sciences, 13, 1–11.

    Google Scholar 

  • Matumba, L., Maurice, M., Khongac, E. B., & Lakudzalad, D. D. (2011). Aflatoxins in sorghum, sorghum malt and traditional opaque beer in southern Malawi. Food Control, 22, 266–268.

    CAS  Google Scholar 

  • Mazzani, C. C. B. (1988). Fungi associated with sorghum grain stored in Venezuela and their control with ammonium propionate in the laboratory. Fitopatología Venezolana, 1, 54–58.

    Google Scholar 

  • McMillian, W. E., Wilson, D. M., Mirocha, C. J., & Widstrom, N. W. (1983). Mycotoxin contamination in grain sorghum from fields in Georgia and Mississippi. Cereal Chemistry, 60, 226–227.

    Google Scholar 

  • Menkir, A., Ejeta, G., Butler, L. G., Melakeberhan, A., & Warren, H. L. (1996). Fungal invasion of kernels and grain mold damage assessment in diverse sorghum germ plasm. Plant Disease, 80, 1399–1402.

    Google Scholar 

  • Mishra, A. B., Sharma, S. M., & Singh, S. P. (1969). Fungi associated with Sorghum vulgare under different storage conditions in India. PANS Pest Articles News Summaries, 15, 365–367.

    Google Scholar 

  • Moubasher, A. H., Elnaghy, M. A., & Abdel-Hafez, S. I. (1971). Studies on the fungus flora of three grains in Egypt. Mycopathologia et Ivlycologia Applicate, 47, 261–274.

    Google Scholar 

  • Niessen, L., Bechtner, J., Fodil, S., Taniwaki, M. H., & Vogel, R. F. (2018). LAMP-based group specific detection of aflatoxin producers within Aspergillus section Flavi in food raw materials, spices, and dried fruit using neutral red for visible-light signal detection. International Journal of Food Microbiology, 2, 241–250.

    Google Scholar 

  • Oliveira, R. C., Goncalves, S. S., Oliveira, M. S., Dilkin, P., Mallmann, C. A., Freitas, R. S., Bianchi, P., & Correa, B. (2017). Natural occurrence of tenuazonic acid and Phoma sorghina in Brazilian sorghum grains at different maturity stages. Food Chemistry, 230, 491–496.

    CAS  PubMed  Google Scholar 

  • Oliveira, R. C., Carnielli-Queiroz, L., & Correa, B. (2018). Epicoccum sorghinum in food: Occurrence, genetic aspects and tenuazonic acid production. Current Opinion on Food Science, 23, 44–48.

    Google Scholar 

  • Onyike, N. B. N., & Nelson, P. E. (1992). Fusarium species associated with sorghum grain from Nigeria, Lesotho, and Zimbabwe. Mycología, 84, 452–458.

    Google Scholar 

  • Oueslati, S., Romero-González, R., Lasram, S., Garrido Frenich, A., & Martínez Vidal, J. L. (2012). Multi-mycotoxin determination in cereals and derived products marketed in Tunisia using ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry. Food and Chemical Toxicology, 50, 2376–2381.

    CAS  PubMed  Google Scholar 

  • Oueslati, S., Jesús, B., Juan, C. M., Abdelwahed, G., & Jordi, M. (2014). Presence of mycotoxins in sorghum and intake estimation in Tunisia. Food Additives and Contaminants, 31, 307–318.

    CAS  PubMed  Google Scholar 

  • Paiva, C. L., Queiroz, V. A. V., Simeone, M. L. F., Schaffert, R. E., de Oliveira, A. C., & da Silva, C. S. (2017). Mineral content of sorghum genotypes and the influence of water stress. Food Chemistry, 214, 400–405.

    CAS  PubMed  Google Scholar 

  • Panchal, V. H., & Dhale, D. A. (2011). Isolation of seed-borne fungi of sorghum (Sorghum vulgare pers.). Journal of Phytology, 3, 45–48.

    Google Scholar 

  • Peerzada, A. M., Ali, H. H., & Chauhan, B. S. (2017). Weed management in sorghum [Sorghum bicolor (L.) Moench] using crop competition: A review. Crop Protection, 95, 74–80.

    Google Scholar 

  • Pestka, J. J., & Smolinski, A. T. (2005). Deoxynivalenol: Toxicology and potential effects on humans. Journal of Toxicology and Environmental Health, Part B, 8, 39–69.

    CAS  Google Scholar 

  • Piacentini, K. C., Rocha, L. O., Savi, G. D., Carnielli-Queiroz, L., De Carvalho Fontes, L., & Correa, B. (2019). Assessment of toxigenic Fusarium species and their mycotoxins in brewing barley grains. Toxins, 11, 13.

    Google Scholar 

  • Pontieri, P., & Del Giudice, L. (2016). Sorghum: A novel and healthy food. In B. Caballero, P. Finglas, & F. Toldrá (Eds.), The encyclopedia of food and health (Vol. 5, pp. 33–42). Oxford: Academic Press.

    Google Scholar 

  • Rabie, C. J., & Lübben, A. (1984). The mycoflora of sorghum malt. Southern African Journal of Botany, 3, 251–255.

    Google Scholar 

  • Ratnavathi, C. V., Komala, V. V., Kumar, B. S., Das, I. K., & Patil, J. V. (2012). Natural occurrence of aflatoxin B1 in sorghum grown in different geographical regions of India. Journal of Science Food and Agriculture, 92, 2416–2420.

    CAS  Google Scholar 

  • Reddy, B., & Raghavender, C. (2008). Outbreaks of Fusarium-toxicosis in India. Cereal research communications, 3rd international symposium on Fusarium head blight, 36, 321-325.

  • Reddy, B. N., Nusrath, M., & Nagamani, V. (1985). Aflatoxin and other mycotoxin contamination in sorghum under field conditions. Indian Journal of Botany, 8, 135–137.

    CAS  Google Scholar 

  • Rychlik, M., Lepper, H., Weidner, C., & Asam, S. (2016). Risk evaluation of the Alternaria mycotoxin tenuazonic acid in foods for adults and infants and subsequent risk management. Food Control, 68, 181–185.

    CAS  Google Scholar 

  • Salifu, A. (1978). Mycotoxins in short season varieties of sorghum in northern Nigeria, Samaru. Journal of Agricultural Research, 1, 83–87.

    Google Scholar 

  • Sashidhar, R. B., Ramakrishna, Y., & Ramsh Bhat, V. (1992). Moulds and mycotoxins in sorghum stored in traditional containers in India. Journal of Stored Products Research, 28, 257–260.

    Google Scholar 

  • Saubios, A., Piontelli, E., Nepote, C., & Wagner, M. L. (1999). Mycological evaluation of a sorghum grain of Argentina with emphasis on the characterization of Fusarium species. Food Microbiology, 16, 435–445.

    Google Scholar 

  • Seitz, L. M., Mohr, H. E., Burroughs, R., & Glueck, J. A. (1983). Preharvest fungal invasion of sorghum grain. Cereal Chemistry, 60, 127–130.

    Google Scholar 

  • Serna-Saldivar, S. O. (2016). Cereal grains: Properties, processing, and nutritional attributes. In Food preservation Technology Series. CRC Press, Taylor and Francis Group.

  • Sharma, R., Thakur, R. P., Senthilvel, S., Nayak, S., Reddy, S. V., Rao, V. P., & Varshney, R. K. (2011). Identification and characterization of toxigenic fusaria associated with sorghum grain mold complex in India. Mycopathologia, 171, 223–230.

    PubMed  Google Scholar 

  • Shotwell, L., Bennett, G. A., Goulden, M. L., Plattner, R. D., & Hesseltine, C. W. (1980). Survey for zearalenone, aflatoxin, and ochratoxin in U.S. grain sorghum from 1975 and 1976 crops. Journal of Association of Official Analytical Chemistry, 63, 922–926.

    Google Scholar 

  • Smith, C. W., & Frederiksen, R. A. (2000). Sorghum: Origin, history, technology, and production (p. 824). New York: John Wiley and Sons.

    Google Scholar 

  • Tarekegn, G., McLaren, W., & Swart, J. W. (2006). Effects of weather variables on grain mould of sorghum in South Africa. Plant Pathology, 55, 238–245.

    Google Scholar 

  • Taye, W., Ayalew, A., Chala, A., & Dejene, M. (2016). Aflatoxin B1 and total fumonisin contamination and their producing fungi in fresh and stored sorghum grain in east Hararghe, Ethiopia. Food Additives and Contaminants, 9, 237–245.

    CAS  PubMed  Google Scholar 

  • Thakur, R. P., Rao, V. P., Agarkar, G. D., Solunke, R. B., Bhat, B., & Navi, S. S. (2006). Variation in occurrence and severity of major sorghum grain mold pathogens in India. Indian Phytopathology, 59, 410–416.

    Google Scholar 

  • United States Department of Agriculture (USDA) (2015). Office of the Chief Economist. Agricultural Projections to 2024. World Agricultural Outlook Board. Retrieved from: https://www.usda.gov/oce/commodity/projections/USDA_Agricultural_Projections_to_2024.pdf. Accessed 20 May 2019.

  • US Food and Drug Administration (USFDA) (2000). Guidance for industry: action levels for poisonous or deleterious substances in human food and animal feed. Available at: http://tinyurl.com/ m6dgula. Accessed 20 May 2019.

  • Venkateswaran, K., Elangovan, M., & Sivaraj, N. (2019). Chapter 2: Origin, domestication and diffusion of Sorghum bicolor. In C. Aruna, K. B. R. S. Visarada, B. Venkatesh Bhat, & V. A. Tonapi (Eds.), Breeding Sorghum for diverse end uses (pp. 15–31). Woodhead publishing series in food science, technology and nutrition.

  • Visarada, K. B. R. S., & Aruna, C. (2019). Chpter 1: Sorghum: A bundle of opportunities in the 21st century. In C. Aruna, K. B. R. S. Visarada, B. Venkatesh Bhat, & V. A. Tonapi (Eds.), Breeding Sorghum for Diverse End Uses (pp. 1–14). Woodhead Publishing Series in Food Science, Technology and Nutrition.

  • World Health Organization (WHO) (2006). Mycotoxins in African foods: Implications to food safety and health. AFRO Food Safety Newsletter. World Health Organization Food safety (FOS). Retrieved from: www.afro.who.int/des.

  • Yago, J. I., Roh, J., Bae, S., Yoon, Y., Kim, H., & Nam, M. (2011). The effect of seed-borne mycoflora from sorghum and foxtail millet seeds on germination and disease transmission. Mycobiology, 39, 206–218.

    PubMed  PubMed Central  Google Scholar 

  • Yassin, M. A., El-Samawaty, A., Bahkali, A., Moslem, M., Abd-Elsalam, K. A., & Hyde, K. D. (2010). Mycotoxin-producing fungi occurring in sorghum grains from Saudi Arabia. Fungal Diversity, 44, 45–52.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET; Grant PIP 0819).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea L. Astoreca.

Ethics declarations

Conflict of interest

We have read the topics listed and confirm that there is no conflict of interest of any kind.

Research involving human participants and/or animals

Does not correspond.

Informed consent

We have carefully read everything concerning this point, and we give our consent to the veracity of the confirmed..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astoreca, A.L., Emateguy, L.G. & Alconada, T.M. Fungal contamination and mycotoxins associated with sorghum crop: its relevance today. Eur J Plant Pathol 155, 381–392 (2019). https://doi.org/10.1007/s10658-019-01797-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01797-w

Keywords

Navigation