Skip to main content

Fusarium Species and Their Associated Mycotoxins in Foods and Their Products in Africa

  • Chapter
  • First Online:
Food Security and Safety

Abstract

Fusarium species threaten the quality and yield of many foods and their products; hence they are of major concern to food safety, and crop and feed production worldwide. Fusarium produces mycotoxins which are toxic to animals and humans. These mycotoxins include fumonisins, trichothecenes and zearalenone. Mycotoxins are of great public health importance because they cause mycotoxicoses in live-stock, other animals and man. Over 50 species of Fusarium produce mycotoxins and infect the grain of many cereals such as wheat and maize as well as other food crops and their products. In Africa, the gross domestic product is partially based on agricultural products. Crops like maize, peanuts, beans, cassava, cocoa and coffee are the most cultivated. A high portion of cultivated crops is consumed locally, and the other part is exported to foreign countries in order to balance the economy. The most important problems the African continent is facing are postharvest losses due to fungal contamination and the presence of mycotoxins in food. This chapter seeks to discuss mycotoxins produced by Fusarium in food and food products, the role they play in animal and human nutrition and health in Africa, as well as their mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avantaggio, G., Quaran, F., Desidero, E., & Visconti, A. (2002). Fumonisin contamination of maize hybrid visibly damaged by sesame. Journal of Science and Food Agriculture, 3, 13–18.

    Google Scholar 

  • Bacon, C. W., Porter, J. K., & Norred, W. P. (1995). Toxic interaction of fumonisin B, and fusaric acid measured by injection into fertile chicken egg. Mycopathologia, 129, 29–35.

    Article  CAS  PubMed  Google Scholar 

  • Bacon, C. W., Porter, J. K., Norred, W. P., & Leslie, J. F. (1996). Production of Fusaric acid by Fusarium species. Applied and Environmental Microbiology, 62(11), 4039–4043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkai-Golan, R. (2001). Postharvest diseases of fruits and vegetables. New York: Elsevier.

    Google Scholar 

  • Barrett, J. (2000). Mycotoxins: Of molds and maladies. Environmental Health Perspectives, 108, A20–A23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett, J. W and Bentley, R. (1989). What’s in a name? Microbial secondary metabolism. Adv Applied Microbiology 34, 1–28.

    Google Scholar 

  • Blandino, M., Reyneri, A., Vanara, F., Tamietti, T., & Pietri, A. (2009). Influence of agricultural practices on Fusarium infection, fumonisin anddeoxynivalenol contamination of maize kernels. World Mycotoxin Journal, 2(4), 409–418.

    Article  CAS  Google Scholar 

  • Bullerman, L. B. (1996). Occurrence of Fusarium and fumonisins on food grains and in foods. Advances in Experimental Medicine and Biology, 392, 27–38.

    Article  CAS  PubMed  Google Scholar 

  • CAST. (2003). Mycotoxins: Risks in plant, animal and human systems. Report No. 139, Council for Agricultural Science and Technology, Ames.

    Google Scholar 

  • Cornely, O. A. (2008). Aspergillus to Zygomycetes: Causes, risk factors, prevention, and treatment of invasive fungal infections. Infection, 36(4), 296–313. https://doi.org/10.1007/s15010-008-7357-z.

    Article  CAS  PubMed  Google Scholar 

  • D’Mello, J. P. F., & Macdonald, A. M. C. (1997). Mycotoxins. Animal Feed Science and Technology, 69, 155–166. https://doi.org/10.1016/S0377-8401(97)81630-6.

    Article  Google Scholar 

  • Desjardins, A. E., & Proctor, R. H. (2007). Molecular biology of Fusarium mycotoxins. International Journal of Food Microbiology, 119(1–2), 47–50. https://doi.org/10.1016/j.ijfoodmicro.2007.07.024.

    Article  CAS  PubMed  Google Scholar 

  • Doohan, F. M., Brennan, J., & Cooke, B. M. (2003). Influence of climatic factors on Fusarium species pathogenic to cereals. European Journal of Plant Pathology, 109, 755–768.

    Article  Google Scholar 

  • Dorner, J. W., Cole, R. J., & Blankenship, P. D. (1998). Effect of inoculum rate of biological control agents on preharvest aflatoxin contamination of peanuts. Biological Control, 12, 171–176. https://doi.org/10.1006/bcon.1998.0634.

    Article  Google Scholar 

  • Eckard, S., Wettstein, F. E., Forrer, H.-R., & Vogelgsang, S. (2011). Incidence of Fusarium species and mycotoxins in silage maize. Toxins, 3, 949–967. https://doi.org/10.3390/toxins3080949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksen, G. S., & Pettersson, H. (2004). Toxicological evaluation of trichothecenes in animal feed. Animal Feed Science and Technology, 114, 205–239.

    Article  CAS  Google Scholar 

  • Fandohan, P., Gnonlonfin, B., Hell, K., Marasas, W. F. O., & Wingfield, M. J. (2005). Natural occurrence of Fusarium and subsequent fumonisin contamination in preharvest and stored maize in Benin, West Africa. International Journal of Food Microbiology, 99, 173–183. https://doi.org/10.1016/j.ijfoodmicro.2004.08.012.

    Article  CAS  PubMed  Google Scholar 

  • FAO. (2004). Food and agriculture organization of the United Nations. Worldwide regulations for mycotoxins in food and feed 2003. FAO Food and Nutrition Paper.

    Google Scholar 

  • Fotso, J., Leslie, J. F., & Smith, J. S. (2002). Production of Beauvericin, Moniliformin, Fusaproliferin, and Fumonisins B1, B2, and B3 by fifteen ex-type strains of Fusarium species†. Applied and Environmental Microbiology, 68(10), 5195–5197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haidukowski, M., Pascale, M., Perrone, G., Pancaldi, D., Campagna, C., & Visconti, A. (2005). Effect of fungicides on the development of Fusarium head blight, yield and deoxynivalenol accumulation in wheat inoculated under field conditions with Fusarium graminearum and Fusarium culmorum. Journal of Science and Food Agriculture, 85, 191–198. https://doi.org/10.1002/(ISSN)1097-0010.

    Article  CAS  Google Scholar 

  • IARC. (1993). International Agency for Research on Cancer. Monographs on the evaluation of carcinogenic risks to humans. Volume 56, International Agency for Research, Lyon.

    Google Scholar 

  • Ismaiel, A. A., & Papenbrock, J. (2015). Mycotoxins: Producing fungi and mechanisms of phytotoxicity. Agriculture, 5, 492–537. https://doi.org/10.3390/agriculture5030492.

    Article  Google Scholar 

  • James, B. (2005). Public awareness of aflatoxins and food quality control. Benin: International Institute of Tropical Agriculture.

    Google Scholar 

  • Jarvis, B. B. (2002). Chemistry and toxicology of molds isolated from water-damaged buildings, Mycotoxins and food safety. Advances in Experimental Medicine and Biology, 504, 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Jayas, D. S., & Jeyamkondan, S. P. H. (2002). Postharvest technology: Modified atmosphere storage of grains meats fruits and vegetables. Biosystems Engineering, 82, 235–251.

    Article  Google Scholar 

  • Jimenez, M., Huerta, T., & Mateo, A. (1997). Microbiology of mycotoxin production by Fusarium species isolated from bananas. Applied and Environmental Microbiology, 2, 364–369.

    Article  Google Scholar 

  • Juan, C., Mañes, J., Raiola, A., & Ritieni, A. (2013). Evaluation of beauvericin and enniatins in Italian cereal products and multicereal food by liquid chromatography coupled to triple quadrupole mass spectrometry. Food Chemistry, 140(4), 755–762. https://doi.org/10.1016/j.foodchem.2012.08.021.

    Article  CAS  PubMed  Google Scholar 

  • Jurjevic, Z., Solfrizzo, M., Cvjetkovic, B., De Girolamo, A., & Visconti, A. (2002). Occurrence of beauvericin in corn from Croatia. Food Technology and Biotechnology, 40(2), 91–94.

    CAS  Google Scholar 

  • Kelly, A. C., Clear, R. M., O’Donnell, K., McCormick, S., Turkington, T. K., Tekauz, A., Gilbert, J., Kistler, H. C., Busman, M., & Ward, T. J. (2015). Diversity of Fusarium head blight populations and trichothecene toxin types reveals regional differences in pathogen composition and temporal dynamics. Fungal Genetics and Biology, 82, 22–31.

    Article  CAS  PubMed  Google Scholar 

  • Logrieco, A., Moretti, A., Mule, G., Paciolla, C., Ritieni, A., et al. (2008). Advances on the toxicity of the cereal contaminant Fusarium esadepsipeptides. Cereal Research Communications, 36, 303–313. https://doi.org/10.1556/CRC.36.2008.Suppl.B.28.

    Article  CAS  Google Scholar 

  • Magan, N., & Aldred, D. (2007). Post-harvest controlstrategies: Minimizing mycotoxins in the food chain. International Journal of Food Microbiology, 119(1–2), 131–139.

    Article  CAS  PubMed  Google Scholar 

  • Magan, N., & Lacey, J. (1988). Ecological determinants of mould growth in stored grain. International Journal of Food Microbiology, 7, 245–256.

    Article  CAS  PubMed  Google Scholar 

  • Manikandan, P., Galgóczy, L., Selvam, K. P., Shobana, S., Kocsubé, S., Vágvölgyi, C., & Narendran, V. (2011). Fusarium. In D. Liu (Ed.), Molecular detection of human fungal pathogens (pp. 417–433). Boca Raton: CRC Press.

    Google Scholar 

  • Marasas, W. F. O., Van Rensburg, S. J., & Mirocha, C. J. (1979). Incidence of Fusarium species and the mycotoxins, deoxynivalenol and zearalenone, in corn produced in oesophageal cancer areas in Transkei. Journal of Agricultural and Food Chemistry, 27, 1108–1112.

    Article  CAS  PubMed  Google Scholar 

  • Marasas, W. F. O., Jaskiewicz, K., Venter, F. S., & Van Schalkwyk, D. J. (1988). Fusarium moniliforme contamination of maize in oesophageal cancer areas in Transkei. South African Medical Journal, 74, 110–114.

    CAS  PubMed  Google Scholar 

  • McLean, M. (1996). The phytotoxicity of Fusarium metabolites: An update since 1989. Mycopathologia, 133, 163–179.

    Article  CAS  PubMed  Google Scholar 

  • McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G., & Van Sanford, D. (2012). A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Disease, 96, 1712–1728.

    Article  PubMed  Google Scholar 

  • Miller, S.A., Rowe, R.C., Riedel, R.M. (2011). Fusarium and Verticillium wilts of tomato. potato, pepper, and egg plant. Fact Sheet. Ohio State University.

    Google Scholar 

  • Moretti, A. O. (2009). Taxonomy of Fusarium genus: A continuous fight between lumpers and splitters. Proceedings of Natural Science Matica Srpska Novi Sad, 117, 7–13. https://doi.org/10.2298/ZMSPN0917007M.

    Article  Google Scholar 

  • Munkvold, G. P., Arias, S., Taschl, I., & Gruber-Dorninger, C. (2019). Mycotoxins in corn: Occurrence, impacts and management. In S. O. Serna-Saldivar (Ed.), Corn chemistry and technology (3rd ed., pp. 235–287). Elsevier.

    Google Scholar 

  • Munkvold, G. P., & Desjardins, A. E. (1997). Fumonisins in maize: can we reduce their occurrence? Plant Disease 81, 556– 65. https://doi.org/10.1094/PDIS.1997.81.6.556.

  • Nelson, P. E., Toussoun, T. A., & Marasas, W. F. O. (1983). Fusarium species: An illustrated manual for identification. Pennsylvania: The Pennsylvania State University Press.

    Google Scholar 

  • Nelson, E. P., Dignani, M. C., & Anaissie, E. J. (1994). Taxonomy, biology, and clinical aspects of Fusarium species. Clinical Microbiology Reviews, 7, 479–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nleya, N., Adetunji, M. C., & Nwanza, M. (2018). Current status of mycotoxin contamination of food commodities in Zimbabwe. Toxins (Basel), 10(5), 89.

    Article  CAS  Google Scholar 

  • Okungbowa, F. I., & Shittu, H. O. (2012a). Vascular wilt of tomato caused by Fusarium oxysporum. f.sp. lycopersici. In T. F. Rios & E. R. Ortega (Eds.), Fusarium epidemiology, environmental sources and prevention (pp. 123–144). New York: Nova Science Publishers.

    Google Scholar 

  • Okungbowa, F. I., & Shittu, H. O. (2012b). Fusarium wilts: An overview. Environmental Research Journal, 6(2), 83–102.

    Google Scholar 

  • Otteneder, H., & Majerus, P. (2000). Occurrence of ochratoxin a in wines: Influence of the type of wine and its geographical origin. Food Additives and Contaminants, 17, 793–798.

    Article  CAS  PubMed  Google Scholar 

  • Paster, N., Blumenthal-Yonassi, J., Barkai-Golan, R., & Menasherov, M. (1991). Production of zearalenone in vitro and in corn grains stored under modified atmospheres. International Journal of Food Microbiology, 12, 157–165.

    Article  CAS  PubMed  Google Scholar 

  • Pestka, J. J. (1995). Fungal toxins in raw and fermented meats. In G. Campbell-Platt & P. E. Cook (Eds.), Fermented meats (pp. 194–216). Glasgow: Blackie Academic and Professional.

    Chapter  Google Scholar 

  • Prosperini, A., Berrada, H., Ruiz, M. J., Caloni, F., Coccini, T., Spicer, L. J., Perego, M. C., & Lafranconi, A. (2017). A review of the mycotoxin enniatin B. Public Health Frontiers, 5, 304.

    Article  Google Scholar 

  • Purokivi, M. K., Hirvonen, M. R., Randell, J. T., Roponen, M., Meklin, T., Nevalainen, A., Husman, T., & Tukiainen, H. O. (2001). Changes in pro-inflammatory cytokines in association with exposure to moisture-damaged building microbes. European Journal of Epidemiology, 18, 951–958.

    CAS  Google Scholar 

  • Rachaputi, N. R., Wright, G. C., & Krosch, S. (2002). Management practices to minimize pre-harvest aflatoxin contamination in Australian groundnuts. Australian Journal of Experimental Agriculture, 42, 595–605. https://doi.org/10.1071/EA01139.

    Article  Google Scholar 

  • Russell, R., Paterson, M., & Lima, N. (2017). Filamentous fungal human pathogens from food emphasising Aspergillus, Fusarium and Mucor. Microorganisms, 5, 44–53.

    Article  Google Scholar 

  • Samapundo, S., De Meulenaer, B., Atukwase, A., Debevere, J., & Devlieghere, F. (2007). The influence of modified atmospheres and their interaction with water activity on the radial growth and fumonisin B1 production of Fusarium verticillioides and F. proliferatum on corn. Part I: The effect of initial headspace carbon dioxide concentration. International Journal of Food Microbiology, 114, 160–167.

    Article  CAS  PubMed  Google Scholar 

  • Sanchis, V., & Magan, N. (2004). Environmental conditions affecting mycotoxins. In N. Magan & M. Olsen (Eds.), Mycotoxins in food: Detection and control (pp. 174–189). Cambridge: Woodhead Publishing Ltd.

    Chapter  Google Scholar 

  • SCOOP. (2003). Collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU Member States. http://ec.europa.eu/food/fs/scoop/task3210.pdf

  • Shapira, R., & Paster, N. (2004). Control of mycotoxins in storage and techniques for their decontamination. In N. Magan & M. Olsen (Eds.), Mycotoxins in food: Detection and control (pp. 190–223). Cambridge: Woodhead Publishing Ltd.

    Chapter  Google Scholar 

  • Shi, W., Tan, Y., Wang, S., Gardiner, D. M., Sarah, De Saeger, S., Liao, Y., Wang, C., Fan, Y., Wang, Z., & Wu, A. (2017). Mycotoxigenic potentials of Fusarium species in various culture matrices revealed by mycotoxin profiling. Toxins, 9, 6. https://doi.org/10.3390/toxins9010006.

    Article  CAS  Google Scholar 

  • Sinha, R. N. (1995). The stored-grain ecosystem. In D. S. Jayas, N. D. White, & W. E. Muir (Eds.), Stored-grain ecosystems (pp. 1–32). New York: Marcel Dekker.

    Google Scholar 

  • Thurston, H. D. (1998). Tropical plant diseases (2nd ed., 200p). Minnesota: APS Press.

    Google Scholar 

  • Turner, P. C., Nikiema, P., & Wild, C. P. (1999). Fumonisin contamination of food: Progress in development of biomarkers to better assess human health risks. Mutation Research, 443, 81–93.

    Article  CAS  PubMed  Google Scholar 

  • White, D. G. (1999). Compendium of corn diseases (3rd ed.). St. Paul: American Phytopathological Society.

    Google Scholar 

  • WHO. (2006). World Health Organization. Mycotoxins in African foods: Implications to food safety and health, AFRO Food safety.

    Google Scholar 

  • Wilson, J. P., Jurjevic, Z., Hanna, W. W., Wilson, D. M., & Potter, T. L. (2006). Host-specific variation in infection by toxigenic fungi and contamination by mycotoxins in pearl millet and corn. Mycopathologia, 161(2), 101–107.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okungbowa, F.I., Kinge, T.R. (2021). Fusarium Species and Their Associated Mycotoxins in Foods and Their Products in Africa. In: Babalola, O.O. (eds) Food Security and Safety . Springer, Cham. https://doi.org/10.1007/978-3-030-50672-8_36

Download citation

Publish with us

Policies and ethics