Skip to main content
Log in

Pollen and seed transmission of Columnea latent viroid in eggplants

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Viroid seed transmission data are important for plant production because such information can be very helpful in preventing the movement of viroids worldwide via infected seed. In this study, the reverse transcription-polymerase chain reaction (RT-PCR) technique was used with columnea latent viroid (CLVd) specific primers to investigate viroid seed transmission from three infected eggplant (Solanum melongena L.) genotypes through cross-pollination to seeds and seedlings. Pollen was harvested from CLVd-infected eggplant plants and used to cross-pollinate healthy plants (recipient parents) to produce seeds for the CLVd seed transmission test. CLVd that was localized on the seed coat and in the seedlings was determined using a ‘top-of-paper’ germination technique. The RT-PCR results showed positive results, indicating that CLVd was located in both the seed coat and the seedling. The RT-PCR test performed on 8 week-old seedlings of ‘Farmers Long’, ‘Jamaica’ and ‘RPG’ showed that the seed transmission rates were 82%, 6.4% and 2.3%, respectively. Based on this work, CLVd seed transmission was confirmed in eggplant. Furthermore, these results indicated that CLVd-infected pollen carries the risk of transmitting the viroid, during cross-pollination, from a donor eggplant to its progeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ameyaw, G. A., Wetten, A., Dzahini-Obiatey, H., Domfeh, O., & Allainguillaume, J. (2013). Investigation on Cacao swollen shoot virus (CSSV) pollen transmission through cross-pollination. Plant Pathology, 62, 421–427.

    Article  CAS  Google Scholar 

  • Antignus, Y., Lachman, O., & Pearlsman, M. (2007). Spread of Tomato apical stunt viroid (TASVd) in greenhouse tomato crops is associated with seed transmission and bumble bee activity. Plant Disease, 91(1), 47–50.

    Article  CAS  PubMed  Google Scholar 

  • Bussie, F., Lehoux, J., Thompson, D. A., Skrzeczkowski, L. J., & Perreault, J. P. (1999). Subcellular localization and rolling circle replication of Peach latent mosaic viroid: Hallmarks of group A viroids. Journal of Virology, 73(8), 6353–6360.

    Article  Google Scholar 

  • Card, S. D., Pearson, M. N., & Clover, G. R. G. (2007). Plant pathogens transmitted by pollen. Australasian Plant Pathology, 36(5), 455–461.

    Article  Google Scholar 

  • Chen, F., Dahal, P., & Bradford, K. J. (2001). Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination. Plant Physiology, 127(3), 928–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, W. K., Jo, Y., Jo, K. M., & Kim, K. H. (2013). A current overview of two viroids that infect chrysanthemums: Chrysanthemum stunt viroid and Chrysanthemum chlorotic mottle viroid. Viruses, 5(4), 1099–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole, A., Mink, G. I., & Regev, S. (1982). Location of Prunes necrotic ringspot virus on pollen grains from infected almond and cherry trees. Phytopathology, 72, 1542–1545.

    Article  Google Scholar 

  • Flores, R., Delgado, S., Gas, M. E., Carbonell, A., Molina, D., Gago, S., et al. (2004). Viroids: The minimal non-coding RNAs with autonomous replication. FEBS Letters, 567(1), 42–48.

    Article  CAS  PubMed  Google Scholar 

  • Gozmanova, M. (2003). Characterization of the RNA motif responsible for the specific interaction of Potato spindle tuber viroid RNA (PSTVd) and the tomato protein Virp1. Nucleic Acids Research, 31(19), 5534–5543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamelin, F. M., Allen, L. J., Prendeville, H. R., Hajimorad, M. R., & Jeger, M. J. (2016). The evolution of plant virus transmission pathways. Journal of Theoretical Biology, 396, 75–89.

    Article  PubMed  Google Scholar 

  • Hammond, R., Smith, D. R., & Diener, T. O. (1989). Nucleotide sequence and proposed secondary structure of Columnea latent viroid: A natural mosaic of viroid sequences. Nucleic Acids Research, 17(23), 10083–10094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins, D. L., Thompson, C. M., Hilgren, J., & Lovic, B. (2003). Wet seed treatment with peroxyacetic acid for the control of bacterial fruit blotch and other seedborne diseases of watermelon. Plant Disease, 87, 1495–1499.

    Article  CAS  PubMed  Google Scholar 

  • Isogai, M., Yoshida, T., Nakanowatari, C., & Yoshikawa, N. (2014). Penetration of pollen tubes with accumulated Raspberry bushy dwarf virus into stigmas is involved in initial infection of maternal tissue and horizontal transmission. Virology, 452-453, 247–253.

    Article  CAS  PubMed  Google Scholar 

  • Isogai, M., Kamata, Y., Ando, S., Kamata, M., Shirakawa, A., Sekine, K. T., & Yoshikawa, N. (2017). Horizontal pollen transmission of Gentian ovary ring-spot virus is initiated during penetration of the stigma and style by infected pollen tubes. Virology, 503, 6–11.

    Article  CAS  PubMed  Google Scholar 

  • Jaspers, M. V., Falloon, P. G., & Pearson, M. N. (2015). Seed and pollen transmission of Asparagus virus 2. European Journal of Plant Pathology, 142(1), 173–183.

    Article  CAS  Google Scholar 

  • Kawamura, R., Shimura, H., Mochizuki, T., Ohki, S. T., & Masuta, C. (2014). Pollen transmission of Asparagus virus 2 (AV-2) may facilitate mixed infection by two AV-2 isolates in asparagus plants. Phytopathology, 104(9), 1001–1006.

    Article  CAS  PubMed  Google Scholar 

  • Korkmaz, A. (2005). Inclusion of acetyl salicylic acid and methyl jasmonate into the priming solution improves low-temperature germination and emergence of sweet pepper. HortScience, 40(1), 197–200.

    Article  CAS  Google Scholar 

  • Kovalskaya, N., & Hammond, R. W. (2014). Molecular biology of viroid-host interactions and disease control strategies. Plant Science, 228, 48–60.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. C., & Chang, Y. C. (2006). Multiplex RT-PCR detection of two orchid viruses with an internal control of plant nad5 mRNA. Plant Pathology Bulletin, 15, 187–196.

    CAS  Google Scholar 

  • Li, R., Mock, R., Huang, Q., Abad, J., Hartung, J., & Kinard, G. (2008). A reliable and inexpensive method of nucleic acid extraction for the PCR-based detection of diverse plant pathogens. Journal of Virological Methods, 154(1), 48–55.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H. W., Luo, L. X., Li, J. Q., Liu, P. F., Chen, X. Y., & Hao, J. J. (2014). Pollen and seed transmission of Cucumber green mottle mosaic virus in cucumber. Plant Pathology, 63, 72–77.

    Article  CAS  Google Scholar 

  • Matsushita, Y. (2013). REVIEW Chrysanthemum Stunt Viroid. Japan Agricultural Research Quarterly, 47(3), 237–242.

    Article  CAS  Google Scholar 

  • Matsushita, Y., & Tsuda, S. (2014). Distribution of Potato spindle tuber viroid in reproductive organs of petunia during its developmental stages. Phytopathology, 104(9), 964–969.

    Article  PubMed  Google Scholar 

  • Matsushita, Y., & Tsuda, S. (2015). Host ranges of Potato spindle tuber viroid, Tomato chlorotic dwarf viroid, Tomato apical stunt viroid, and Columnea latent viroid in horticultural plants. European Journal of Plant Pathology, 141(1), 193–197.

    Article  Google Scholar 

  • Matsushita, Y., & Tsuda, S. (2016). Seed transmission of Potato spindle tuber viroid, Tomato chlorotic dwarf viroid, Tomato apical stunt viroid, and Columnea latent viroid in horticultural plants. European Journal of Plant Pathology, 145(4), 1007–1011.

    Article  CAS  Google Scholar 

  • Matsushita, Y., Usugi, T., & Tsuda, S. (2011). Distribution of Tomato chlorotic dwarf viroid in floral organs of tomato. European Journal of Plant Pathology, 130(4), 441–447.

    Article  Google Scholar 

  • Nakamura, K., Yamagishi, N., Isogai, M., Komori, S., Ito, T., & Yoshikawa, N. (2011). Seed and pollen transmission of Apple latent spherical virus in apple. Journal of General Plant Pathology, 77(1), 48–53.

    Article  Google Scholar 

  • Nandakumar, N., Singh, A. K., Sharma, R. K., Mohapatra, T., Prabhu, K. V., & Zaman, F. U. (2004). Molecular fingerprinting of hybrids and assessment of genetic purity of hybrid seeds in rice using microsatellite markers. Euphytica, 136, 257–264.

    Article  CAS  Google Scholar 

  • Nielsen, S. L., & Nicolaisen, M. (2010). First report of Columnea latent viroid (CLVd) in Gloxinia gymnostoma, G. nematanthodes and G. purpurascens in a botanical garden in Denmark. New Disease Reports, 22(4), 4.

    Article  Google Scholar 

  • Olivier, T., Šveikauskas, V., Demonty, E., De Jonghe, K., Gentit, P., Viršček-Marn, M., et al. (2016). Inter-laboratory comparison of four RT-PCR based methods for the generic detection of pospiviroids in tomato leaves and seeds. European Journal of Plant Pathology, 144, 645–654.

    Article  CAS  Google Scholar 

  • Owens, R. A., & Hammond, R. W. (2009). Viroid pathogenicity: One process, many faces. Viruses, 1(2), 298–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacumbaba, E. P., Zelazny, B., Orense, J. C., & Rillo, E. P. (1994). Evidence for pollen and seed transmission of the Coconut Cadang-cadang viroid in Cocos nucifera. Journal of Phytopathology, 142(1), 37–42.

    Article  Google Scholar 

  • Prasada Rao, R. D. V. J., Rao, A. S. R., Reddy, S. V., Thirumala-Devi, K., Rao, S. C., Kumar, V. M., et al. (2003). The host range of Tobacco streak virus in India and transmission by thrips. Annals of Applied Biology, 142, 365–368.

    Article  Google Scholar 

  • Reanwarakorn, K., Klinkong, S., & Porsoongnurn, J. (2011). First report of natural infection of Pepper chat fruit viroid in tomato plants in Thailand. New Disease Reports, 24, 6.

    Article  Google Scholar 

  • Singh, R. P., & Dilworth, A. D. (2009). Tomato chlorotic dwarf viroid in the ornamental plant Vinca minor and its transmission through tomato seed. European Journal of Plant Pathology, 123, 111–116.

    Article  Google Scholar 

  • Singh, R. P., Nie, X., & Singh, M. (1999). Tomato chlorotic dwarf viroid: An evolutionary link in the origin of pospiviroids. Journal of General Virology, 80, 6.

    Google Scholar 

  • Singh, R. P., Dilworth, A. D., Ao, X., Singh, M., & Baranwal, V. K. (2009). Citrus exocortis viroid transmission through commercially-distributed seeds of Impatiens and Verbena plants. European Journal of Plant Pathology, 124(4), 691–694.

    Article  Google Scholar 

  • Verhoeven, J. T., Jansen, C. C. C., Willemen, T. M., Kox, L. F. F., Owens, R. A., & Roenhorst, J. W. (2004). Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110, 823–831.

    Article  CAS  Google Scholar 

  • Verhoeven, J. T., Jansen, C. C. C., Roenhorst, J. W., Flores, R., & de la Pena, M. (2009). Pepper chat fruit viroid: Biological and molecular properties of a proposed new species of the genus Pospiviroid. Virus Research, 144(1), 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa, H., & Matsushita, Y. (2017). Host ranges and seed transmission of Tomato planta macho viroid and Pepper chat fruit viroid. European Journal of Plant Pathology, 194(1), 211–217.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by: the Center for Advanced Studies for Agriculture and Food, Institute for Advanced Studies, Kasetsart University Under the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Ministry of Education, Thailand; the Center of Excellence on Agricultural Biotechnology, Science and Technology Postgraduate Education and Research Development Office, Office of Higher Education Commission, Ministry of Education (AG-BIO/PERDO-CHE); the Agricultural Research Development Agency (Public Organization); the National Research Council of Thailand (NRCT); the Kasetsart University Research and Development Institute (KURDI); and the Department of Plant Pathology, Kasetsart University, Kamphaeng Saen campus, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanungnit Reanwarakorn.

Ethics declarations

Disclosure of potential conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuvitarkorn, S., Reanwarakorn, K. Pollen and seed transmission of Columnea latent viroid in eggplants. Eur J Plant Pathol 154, 1067–1075 (2019). https://doi.org/10.1007/s10658-019-01728-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01728-9

Keywords

Navigation