Skip to main content
Log in

Host ranges and seed transmission of Tomato planta macho viroid and Pepper chat fruit viroid

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Host ranges of Tomato planta macho viroid (TPMVd) and Pepper chat fruit viroid (PCFVd) were investigated across 32 species representing 10 genera, including horticultural plants that are frequently imported in large numbers by Japan. Plants were infected by mechanical sap inoculation, and viroid presence was checked using reverse-transcription polymerase chain reaction and back-inoculation of tomato. Among the 32 species, 16 and 15 were susceptible to TPMVd and PCFVd, respectively; most belonged to Solanaceae, and symptoms were only observed in tomato, potato, green pepper, and Solanum muricatum. Seed transmission of TPMVd and PCFVd was carried out using seeds obtained from infected tomato, Capsicum annuum, and Petunia × hybrida plants, and from a series of crosses involving healthy or infected Petunia × hybrida parental material. The seed transmission rate of TPMVd was 0–4.4% in tomato and 17.5 or 43.3% in Petunia × hybrida, while that of PCFVd was 0–1.4% in tomato and 0 or 16.8% in Petunia × hybrida. Seed transmission via the viroid-infected pollen parent or infected seed parent was investigated in Petunia × hybrida; rates were 91.8% and 100% for TPMVd and 69.2% and 65.3% for PCFVd, respectively. These data indicated a risk of unexpected worldwide viroid spread via international trade of asymptomatic plants and viroid-infected seeds and pollen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Antignus, Y., Lachman, O., & Pearlsman, M. (2007). Spread of Tomato apical stunt viroid (TASVd) in greenhouse tomato crops is associated with seed transmission and bumble bee activity. Plant Disease, 91(1), 47–50.

    Article  CAS  Google Scholar 

  • Brunschot, S. L. V., Verhoeven, J. T. J., Persley, D. M., Geering, A. D. W., Drenth, A., & Thomas, J. E. (2014). An outbreak of potato spindle tuber viroid in tomato is linked to imported seed. European Journal of Plant Pathology, 139(1), 1–7.

    Article  Google Scholar 

  • Chambers, G. A., Seyb, A. M., Mackie, J., Constable, F. E., Rodoni, B. C., & Letham, D. (2013). First report of Pepper chat fruit viroid in traded tomato seed, an interception by Australian biosecurity. Plant Disease, 97(10), 1386.

    Article  Google Scholar 

  • Chung, B. N., & Pak, H. S. (2008). Seed transmission of Chrysanthemum stunt viroid in chrysanthemum (Dendranthema grandiflorum) in Korea. Plant Pathology Journal, 24(1), 31–35.

    Article  CAS  Google Scholar 

  • Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19–21.

    Article  CAS  Google Scholar 

  • Diener, T. O., & Raymer, W. B. (1971). Potato spindle tuber ‘virus’. CMI/AAB Description Plant Viruses, 66, 4.

    Google Scholar 

  • Ding, B., & Itaya, A. (2007). Viroid: a useful model for studying the basic principles of infection and RNA biology. Molecular Plant-Microbe Interactions, 20(1), 7–20.

    Article  CAS  PubMed  Google Scholar 

  • Galindo, J., Smith, D. R., & Diener, T. O. (1982). Etiology of planta macho, a viroid disease of tomato. Phytopathology, 72(1), 49–54.

    Article  CAS  Google Scholar 

  • Galindo, J., Lopez, M., & Aguilar, T. (1986). Significance of Myzus persicae in the spread of tomato planta macha viroid. Fitopatologia Brasileira, 2, 400–410.

    Google Scholar 

  • Hadidi, A., Flores, R., Randles, J. W., & Semancik, J. S. (Eds.). (2003). Viroids. Collingwood, Victoria: CSIRO Publishing.

    Google Scholar 

  • Ito, T., Ieki, H., Ozaki, K., Iwanami, T., Nakahara, K., Hataya, T., Ito, T., Isaka, M., & Kano, T. (2002). Multiple citrus viroids in citrus from Japan and their ability to produce exocortis-like symptoms in citron. Phytopathology, 92(5), 542–547.

    Article  CAS  PubMed  Google Scholar 

  • Kryczyński, S., Paduch-Cichal, E., & Skrzeczkowski, L. J. (1988). Transmission of three viroids through seed and pollen of tomato plants. Journal of Phytopathology, 121(1), 51–57.

    Article  Google Scholar 

  • Ling, K. S., & Bledsoe, M. (2009). First report of Mexican papita viroid infecting greenhouse tomato in Canada. Plant Disease, 93(8), 839.

    Article  Google Scholar 

  • Ling, K. S., & Zhang, W. (2009). First report of a natural infection of Mexican papita viroid and Tomato chlorotic dwarf viroid in greenhouse tomatoes in Mexico. Plant Disease, 93(11), 1216.

    Article  Google Scholar 

  • Luigi, M., Luison, D., Tomassoli, L., & Faggioli, F. (2011). First report of Potato spindle tuber and Citrus exocortis viroids in Cestrum spp. in Italy. New Disease Reports, 23, 4.

    Article  Google Scholar 

  • Martínez-Soriano, J. P., Galindo-Alonso, J., Maroon, C. J., Yucel, I., Smith, D. R., & Diener, T. O. (1996). Mexican papita viroid: putative ancestor of crop viroids. Proceedings of the National Academy of Sciences of the United States of America, 93(18), 9397–9401.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsushita, Y., & Tsuda, S. (2014). Distribution of Potato spindle tuber viroid in reproductive organs of petunia during its developmental stages. Phytopathology, 104(9), 964–969.

    Article  PubMed  Google Scholar 

  • Matsushita, Y., & Tsuda, S. (2015). Host ranges of Potato spindle tuber viroid, Tomato chlorotic dwarf viroid, Tomato apical stunt viroid, and Columnea latent viroid in horticultural plants. European Journal of Plant Pathology, 141(1), 193–197.

    Article  Google Scholar 

  • Matsushita, Y., & Tsuda, S. (2016). Seed transmission of Potato spindle tuber viroid, Tomato chlorotic dwarf viroid, Tomato apical stunt viroid, and Columnea latent viroid in horticultural plant. European Journal of Plant Pathology, 154(4), 1007–1011.

    Article  Google Scholar 

  • Matsushita, Y., Tsukiboshi, T., Ito, Y., & Chikuo, Y. (2007). Nucleotide sequences and distribution of Chrysanthemum stunt viroid in Japan. Journal of the Japanese Society for Horticultural Science, 76(4), 333–337.

    Article  CAS  Google Scholar 

  • Matsushita, Y., Kanda, A., Usugi, T., & Tsuda, S. (2008). First report of a Tomato chlorotic dwarf viroid disease on tomato plants in Japan. Journal of General Plant Pathology, 74(2), 182–184.

    Article  CAS  Google Scholar 

  • Matsushita, Y., Usugi, T., & Tsuda, S. (2010). Development of a multiplex RT-PCR detection and identification system for potato spindle tuber viroid and tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 128(2), 165–170.

    Article  CAS  Google Scholar 

  • Matsushita, Y., Usugi, T., & Tsuda, S. (2011). Distribution of tomato chlorotic dwarf viroid in floral organs of tomato. European Journal of Plant Pathology, 130(4), 441–447.

    Article  Google Scholar 

  • Mertelik, J., Kloudova, K., Cervena, G., Necekalova, J., Mikulkova, H., Levkanicova, Z., Dedic, P., & Ptacek, J. (2009). First report of Potato spindle tuber viroid (PSTVd) in Brugmansia spp., Solanum jasminoides, Solanum muricatum and Petunia spp. in the Czech Republic. New Disease Reports, 19, 27.

    Google Scholar 

  • Reanwarakorn, K., Klinkong, S., & Porsoongnum, J. (2011). First report of natural infection of Pepper chat fruit viroid in tomato plants in Thailand. New Disease Reports, 24, 6.

    Article  Google Scholar 

  • Shiraishi, T., Maejima, K., Komatsu, K., Hashimoto, M., Okano, Y., Kitazawa, Y., Yamaji, Y., & Namba, S. (2013). First report of tomato chlorotic dwarf viroid from symptomless petunia plants (Petunia spp.) in Japan. Journal of General Plant Pathology, 79(3), 214.

    Article  Google Scholar 

  • Singh, R. P. (1970). Seed transmission of potato spindle tuber virus in tomato and potato. American Journal of Potato Research, 47(6), 225–227.

    Article  Google Scholar 

  • Singh, R. P., & Dilworth, D. A. (2009). Tomato chlorotic dwarf viroid in the ornamental plant Vinca minor and its transmission through tomato seed. European Journal of Plant Pathology, 123(1), 111–116.

    Article  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsushima, T., Murakami, S., Ito, H., He, Y. H., Raj, A. P. C., & Sano, T. (2011). Molecular characterization of Potato spindle tuber viroid in dahlia. Journal of General Plant Pathology, 77, 253–256.

    Article  CAS  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., Willemen, T. M., Kox, L. F. F., Owens, R. A., & Roenhorst, J. W. (2004). Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110(8), 823–831.

    Article  CAS  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., & Roenhorst, J. W. (2008). First report of Solanum jasminoides infected by Citrus exocortis viroid in Germany and the Netherlands and Tomato apical stunt viroid in Belgium and Germany. Plant Disease, 92(6), 973.

    Article  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C., Roenhorst, J. W., Flores, R., & de la Peña, M. (2009). Pepper chat fruit viroid: biological and molecular properties of a proposed new species of the genus Pospiviroid. Virus Research, 144(1), 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., Botermans, M., & Roenhorst, J. W. (2010). Epidemiological evidence that vegetatively propagated, solanaceous plant species act as sources of Potato spindle tuber viroid inoculum for tomato. Plant Pathology, 59(1), 3–12.

    Article  CAS  Google Scholar 

  • Verhoeven, J. T. J., Botermans, M., Jansen, C. C. C., & Roenhorst, J. W. (2011a). First report of Pepper chat fruit viroid in capsicum pepper in Canada. New Disease Reports, 23, 15.

    Article  Google Scholar 

  • Verhoeven, J. T. J., Roenhorst, J. W., & Owens, R. A. (2011b). Mexican papita viroid and tomato planta macho viroid belong to a single species in the genus Pospiviroid. Archives of Virology, 156(8), 1433–1437.

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven, J. T. J., Botermans, M., Meekes, E. T. M., & Roenhorst, J. W. (2012). Tomato apical stunt viroid in the Netherland: most prevalent pospiviroid in ornamentals and first outbreak in tomatoes. European Journal of Plant Pathology, 133(4), 803–810.

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. T. J. Verhoeven (Naktuinbouw, The Netherlands) and K. Reanwarakorn (Kasetat University, Thailand) for supplying viroid-infected material. Funding was provided by a Grant-in-Aid for “Development of detection and identification techniques of pests in research and development for global warming adaptation and abnormal weather correspondence” from the Ministry of Agriculture, Forestry, and Fisheries of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosuke Matsushita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanagisawa, H., Matsushita, Y. Host ranges and seed transmission of Tomato planta macho viroid and Pepper chat fruit viroid . Eur J Plant Pathol 149, 211–217 (2017). https://doi.org/10.1007/s10658-017-1160-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1160-6

Keywords

Navigation