Skip to main content
Log in

Korean Brassica oleracea germplasm offers a novel source of qualitative resistance to blackleg disease

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Blackleg disease, caused by the hemibiotrophic fungal pathogen Leptosphaeria maculans, is one of the most devastating disease of Brassica species worldwide. To date, a total of 20 race-specific blackleg resistance (R) genes have been reported and all of those loci are located in either the A or B genomes of various Brassica species. The B. oleracea genome (CC) shares a high ancestral synteny with the A genome of B. rapa, suggesting the presence of qualitative (race specific) resistance to blackleg disease is also possible in B. oleracea germplasm. In the present study the C genome of Korean B. oleracea germplasm was screened for the presence of blackleg R genes. Thirty-two inbred cabbage lines with unknown resistance profiles, along with five control B. napus lines with well-characterised race-specific R genes, were assessed for cotyledon resistance against two L. maculans isolates with known and highly-contrasting avirulence gene (Avr) profiles. Two cabbage accessions were identified which produced a strong resistance when challenged with either isolate, demonstrating the presence of effective blackleg R genes in the cabbage C genome. Additionally, 16 microsatellite markers linked to seven different R genes of the B. napus A genome were converted into markers for their homologous regions on the B. oleracea C genome. These markers were used to screen all B. oleracea lines to assess if the novel C genome R genes were syntenous to known R gene-homologous regions of the A genome. The resistant cabbage lines offer C genome R genes for the protection of B. oleracea varieties against incursion of blackleg disease, as well as novel additional resistance sources for introgression into B. napus and B. carinata breeding material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Ananga, A. O., Cebert, E., Soliman, K., Kantety, R., Pacumbaba, R. P., & Konan, K. (2006). RAPD markers associated with resistance to blackleg disease in brassica species. African Journal of Biotechnology, 5, 2041–2048.

    CAS  Google Scholar 

  • Ansan-Melayah, D., Balesdent, M. H., Delourme, R., Pilet, M. L., Tanguy, X., Renard, M., & Rouxel, T. (1998). Genes for race-specific resistance against blackleg disease in Brassica napus L. Plant Breeding, 117, 373–378.

    Article  Google Scholar 

  • Badawy, H. M. A., Hoppe, H. H., & Koch, E. (1991). Differential reactions between the genus Brassica & aggressive single spore isolates of Leptosphaeria maculans. Journal of Phytopathology, 131, 109–119.

    Article  Google Scholar 

  • Balesdent, M. H., Attard, A., Kuhn, A. L., & Rouxel, T. (2002). New avirulence genes in the phytopathogenic fungus Leptosphaeria maculans. Phytopathology, 92, 1122–1133.

    Article  CAS  PubMed  Google Scholar 

  • Balesdent, M. H., Fudal, I., Ollivier, B., Bally, P., Grandaubert, J., Eber, F., Chèvre, A. M., Leflon, M., & Rouxel, T. (2013). The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. New Phytologist, 198, 887–898.

    Article  CAS  PubMed  Google Scholar 

  • Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics, 32, 314–331.

    CAS  PubMed  Google Scholar 

  • Brun, H., Levivier, S., Somda, I., Ruer, D., Renard, M., & Chevre, A. M. (2000). A field method for evaluating the potential durability of new resistance sources: Application to the Leptosphaeria maculans-Brassica napus pathosystem. Phytopathology, 90, 961–966.

    Article  CAS  PubMed  Google Scholar 

  • Chalhoub, B., Denoeud, F., Liu, S., Parkin, I. A., Tang, H., Wang, X., et al. (2014). Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 345, 950–953.

    Article  CAS  PubMed  Google Scholar 

  • Chèvre, A. M., Eber, F., This, P., Barret, P., Tanguy, X., Brun, H., Delseny, M., & Renard, M. (1996). Characterization of Brassica nigra chromosomes and of blackleg resistance in B. napus-B. nigra addition lines. Plant Breeding, 115, 113–118.

    Article  Google Scholar 

  • Chèvre, A. M., Barret, P., Eber, F., Dupuy, P., Brun, H., Tanguy, X., & Renard, M. (1997). Selection of stable Brassica napus-B. juncea recombinant lines resistant to blackleg (Leptosphaeria maculans). 1. Identification of molecular markers, chromosomal and genomic origin of the introgression. Theoretical and Applied Genetics, 95, 1104–1111. doi:10.1007/s001220050669.

    Article  Google Scholar 

  • Christianson, J. A., Rimmer, S. R., Good, A. G., & Lydiate, D. J. (2006). Mapping genes for resistance to Leptosphaeria maculans in Brassica juncea. Genome, 49, 30–41.

    Article  CAS  PubMed  Google Scholar 

  • Del Rio, L., & Ruud, S. (2013). In vitro sensitivity of Leptosphaeria maculans to azoxystrobin. Canadian Journal Plant Pathology, 36, 258.

    Google Scholar 

  • Delourme, R., Pilet-Nayel, M. N., Archipiano, M., Horvais, R., Tangui, X., Rouxel, T., Brun, H., Renard, M., & Balesdent, M. H. (2004). A cluster of major specific resistance genes to Leptosphaeria maculans in Brassica napus. Phytopathology, 94, 578–583.

    Article  CAS  PubMed  Google Scholar 

  • Delourme, R., Chevre, A. M., Brun, H., Rouxel, T., Balesdent, M. H., Dias, J. S., Salisbury, P., Renard, M., & Rimmer, S. R. (2006). Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus). European Journal of Plant Pathology, 114, 41–52.

    Article  Google Scholar 

  • Dilmaghani, A., Balesdent, M. H., Rouxel, T., & Moreno-Rico, O. (2010). First report of Leptosphaeria biglobosa (blackleg) on Brassica oleracea (cabbage) in Mexico. Plant Disease, 94, 791.

    Article  Google Scholar 

  • Dilmaghani, A., Gout, L., Moreno-Rico, O., Dias, J. S., Coudard, L., Castillo-Torres, N., Balesdent, M.-H., & Rouxel, T. (2013). Clonal populations of Leptosphaeria maculans contaminating cabbage in Mexico. Plant Pathology, 62, 1365–3059.

    Article  Google Scholar 

  • Eber, F., Lourgant, K., Brun, H., Lodé, M., Huteau, V., Coriton, O., Alix, K., Balesdent, M. H., & Chèvre, A. M. (2011). Analysis of Brassica nigra chromosomes allows identification of a new effective Leptosphaeria maculans resistance gene introgressed in Brassica napus, In 13th international rapeseed congress. Prague: Czech Republic.

    Google Scholar 

  • FAO Statistics Database (2015). Food and Agriculture Organization of the United Nations. Retrieved 2015–02-02.

  • Ferreira, M. E., Dias, J. S., Mengistu, A., & Williams, P. H. (1991). Screening of Portuguese cole landraces (Brassica oleracea L.) with Leptosphaeria maculans and Xanthomonas campestris pv. Campestris. Euphytica, 65, 219–227.

    Article  Google Scholar 

  • Ferreira, M. E., Rimmer, S. R., Williams, P. H., & Osborn, T. C. (1995). Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopathology, 85, 213–217.

    Article  CAS  Google Scholar 

  • Fitt, B. D. L., Brun, H., Barbetti, M. J., & Sr, R. (2006a). World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). European Journal of Plant Pathology, 114, 3–15.

    Article  Google Scholar 

  • Fitt, B. D. L., Huang, Y. J., van den Bosch, F., & West, J. S. (2006b). Coexistence of related pathogen species on arable crops in space and time. Annual Review of Phytopathology, 44, 163–182.

    Article  CAS  PubMed  Google Scholar 

  • Fitt, B. D., Hu, B. C., Li, Z. Q., Liu, S. Y., Lange, R. M., Kharbanda, P. D., et al. (2008). Strategies to prevent spread of Leptosphaeria maculans (phoma stem canker) onto oilseed rape crops in China; costs and benefits. Plant Pathology, 57, 652–664.

    Article  Google Scholar 

  • Flor, H. H. (1971). Current status of the gene-for-gene concept. Annual Review of Phytopathology, 9, 275–296.

    Article  Google Scholar 

  • Fraser, M., Hwang, S.-F., Ahmed, H. U., Akhavan, A., Stammler, G., Barton, W. R., & Strelkov, S. (2016). Sensitivity of Leptosphaeria maculans to pyraclostrobin in Alberta. Canadian Journal Plant Science, 97, 1–9.

  • Ghanbarnia, K., Fudal, I., Larkan, N. J., Links, M. G., Balesdent, M. H., Profotova, B., et al. (2015). Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2 using an intraspecific comparative genomics approach. Molecular Plant Pathology, 16, 699–709.

    Article  CAS  PubMed  Google Scholar 

  • Hammond, K. E., Lewis, B. G., & Musa, T. M. (1985). A systemic pathway in the infection of oilseed rape plants by Leptosphaeria maculans. Plant Pathology, 34, 557–565.

    Article  Google Scholar 

  • Hao, L. F., Song, P. L., Li, Z. Q., Li, Q. S., & Hu, B. C. (2012). Studies on the biological characteristics of Leptosphaeria biglobosa on Chinese oilseed rape. Chinese Journal of Oil Crop Science, 34, 419–424.

    Google Scholar 

  • Hao, L., Song, P., Huangfu, H., & Li, Z. (2015). Genetic diversity and differentiation of Leptosphaeria biglobosa on oilseed rape in China. Phytoparasitica, 43, 253–263.

    Article  CAS  Google Scholar 

  • Henderson, M. P. (1918). The black leg disease of cabbage caused by Phoma lingam (Tode) Desm. Phytopathology, 8, 379–431.

    Google Scholar 

  • Hong, S. K., Kim, W. G., Shin, D. B., Choi, H. W., Lee, Y. K., & Lee, S. Y. (2009). Occurrence of stem canker on rape caused by Leptosphaeria biglobosa in Korea. Plant Pathology Journal, 25, 294–298.

    Article  Google Scholar 

  • Howlett, B. J. (2004). Current knowledge of the interaction between Brassica napus and Leptosphaeria maculans. Canadian Journal of Plant Pathology, 26, 245–252.

    Article  Google Scholar 

  • Humpherson-Jones, F. M. (2007). The incidence of Alternaria spp. and Leptosphaeria maculans in commercial brassica seed in the United Kingdom. Plant Pathology, 34, 385–390.

    Article  Google Scholar 

  • Koch, E., Song, K., Osborn, T. C., & Williams, P. H. (1991). Relationship between pathogenicity and phylogeny based on restriction fragment length polymorphism in Leptosphaeria. Molecular Plant-Microbe Interactions, 4, 341–349.

    Article  CAS  Google Scholar 

  • Koh, J. C., Barbulescu, D. M., Salisbury, P. A., & Slater, A. T. (2016). Pterostilbene is a potential candidate for control of blackleg in canola. PloS One, 11, e0156186.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamb, C., & Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Biology, 48, 251–275.

    Article  CAS  Google Scholar 

  • Larkan, N. J., Lydiate, D. J., Parkin, I. A. P., Nelson, M. N., Epp, D. J., Cowling, W. A., et al. (2013). The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytologist, 197, 595–605.

    Article  CAS  PubMed  Google Scholar 

  • Larkan, N. J., Lydiate, D. J., Yu, F., Rimmer, S. R., & Borhan, M. H. (2014). Co-localisation of the blackleg resistance genes Rlm2 and LepR3 on Brassica napus chromosome A10. BMC Plant Biology, 14, 387.

    Article  PubMed  PubMed Central  Google Scholar 

  • Larkan, N. J., Ma, L., & Borhan, M. H. (2015). The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. Plant Biotechnology Journal, 13, 983–992.

    Article  CAS  PubMed  Google Scholar 

  • Larkan, N. J., Raman, H., Lydiate, D. J., Robinson, S. J., Yu, F., Barbulescu, D. M., Raman, R., Luckett, D., Burton, W., Wratten, N., Salisbury, P. A., Rimmer, S. R., & Borhan, M. H. (2016). Multi-environment QTL studies suggest a role for cysteine-rich protein kinase genes in quantitative resistance to blackleg disease in Brassica napus. BMC Plant Biology, 16, 1–16.

    Article  Google Scholar 

  • Li, H., Sivasithamparam, K., & Barbetti, M. J. (2003). Breakdown of a Brassica rapa subsp sylvestris single dominant blackleg resistance gene in Brassica napus rapeseed by Leptosphaeria maculans field isolates in Australia. Plant Disease, 87, 752.

    Article  Google Scholar 

  • Liu, Z. (2007). Strategies for managing Leptosphaeria maculans and Leptosphaeria biglobosa to decrease severity of phoma stem canker epidemics on winter oilseed rape. Hatfield, UK: University of Hertfordshire, PhD thesis.

  • Liu, S., Liu, Y., Yang, X., Tong, C., Edwards, D., Parkin, I. A., et al. (2014a). The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 5, 3930. doi:10.1038/ncomms4930.

  • Liu, Z., Latunde-Dada, A. O., Hall, A. M., & Fitt, B. D. (2014b). Phoma stem canker disease on oilseed rape (Brassica napus) in China is caused by Leptosphaeria biglobosa ‘brassicae’. European Journal of Plant Pathology, 140, 841–857.

    Article  Google Scholar 

  • Long, Y., Wang, Z., Sun, Z., Fernando, D., McVetty, P., & Li, G. (2011). Identification of two blackleg resistance genes and fine mapping of one of these two genes in a Brassica napus canola cultivar ‘surpass 400’. Theoretical and Applied Genetics, 122, 1223–1231.

    Article  PubMed  Google Scholar 

  • Mendes-Pereira, E., Balesdent, M. H., Brun, H., & Rouxel, T. (2003). Molecular phylogeny of the Leptosphaeria maculans–L. biglobosa species complex. Mycological Research, 107, 1287–1304.

    Article  CAS  PubMed  Google Scholar 

  • Mithen, R. F., Lewis, B. G., Heaney, R. K., & Fenwick, G. R. (1987). Resistance of leaves of brassica species to Leptosphaeria maculans. Transactions of British Mycological Society, 88, 525–531.

    Article  Google Scholar 

  • Monteiro, A. A., & Williams, P. H. (1989). The exploration of genetic resources of Portuguese cabbage and kale for resistance to several brassica diseases. Euphytica, 41, 215–225.

    Google Scholar 

  • Moreno-Rico, O., Frias-Trevino, A. G., Luna-Ruiz, J. J., Manzano-Flores, D. E., Romero-Cova, S., & Seguin-Swartz, G. (2001). Characterization and pathogenicity of isolates of Leptosphaeria maculans from Aguascalientes and Zacatecas, Mexico. Canadian Journal of Plant Pathology, 23, 270–278.

    Article  Google Scholar 

  • Navabi, Z. K., Parkin, I. A. P., Pires, J. C., Xiong, Z., Thiagarajah, M. R., Good, A. G., & Rahman, M. H. (2010). Introgression of B-genome chromosomes in a doubled haploid population of Brassica napus × B. carinata. Genome, 53, 619–629. doi:10.1139/G10-039.

    Article  CAS  PubMed  Google Scholar 

  • Nieuwhof, M. (1969). 1969 (353 pp). Botany, Cultivation and Utilization. World Crops Series. Leonard Hill, London, UK: Cole Crops.

    Google Scholar 

  • Parlange, F., Daverdin, G., Fudal, I., Kuhn, M. L., Balesdent, M. H., Blaise, F., et al. (2009). Leptosphaeria maculans avirulence gene AvrLm4-7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. Molecular Microbiology, 71, 851–863.

    Article  CAS  PubMed  Google Scholar 

  • Pilet, M. L., Delourme, R., Foisset, N., & Renard, M. (1998). Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm.) Ces. Et de not., in winter rapeseed (Brassica napus L.) Theoretical and Applied Genetics, 96, 23–30.

    Article  Google Scholar 

  • Piliponytė-Dzikienė, A., Andriunaitė, E., Petraitienė, E., Brazauskienė, I., Statkevičiutė, G., & Brazauskas, G. (2015). Genetic diversity and occurrence of Leptosphaeria spp. on Brassica oleracea and B. napus in Lithuania. Journal of Plant Pathology, 97, 265–227.

    Google Scholar 

  • Raman, R., Taylor, B., Lindbeck, K., Coombes, N., Barbulescu, D., Salisbury, P., & Raman, H. (2012a). Molecular mapping and validation of Rlm1 gene for resistance to Leptosphaeria maculans in canola (Brassica napus L.) Crop and Pasture Science, 63, 1007–1017.

    Article  CAS  Google Scholar 

  • Raman, R., Taylor, B., Marcroft, S., Stiller, J., Eckermann, P., Coombes, N., et al. (2012b). Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.) Theoretical and Applied Genetics, 125, 405–418.

    Article  CAS  PubMed  Google Scholar 

  • Raman, H., Raman, R., & Larkan, N. 2013. Genetic dissection of blackleg resistance loci in rapeseed (Brassica napus L.). Plant Breeding from Laboratories to Fields. Edited by Andersen SB. Rijeka, Croatia: InTech, 85–120.

  • Raman, H., Raman, R., Coombes, N., Song, J., Diffey, S., Kilian, A., et al. (2016). Genome-wide association study identifies new loci for resistance to Leptosphaeria maculans in canola. Frontiers in Plant Science, 7, 1513.

    PubMed  PubMed Central  Google Scholar 

  • Rimmer, S. R., & van den Berg, C. G. J. (1992). Resistance of oilseed Brassica spp. to blackleg caused by Leptosphaeria maculans. Canadian Journal of Plant Pathology, 14, 56–66.

    Article  Google Scholar 

  • Rouxel, T., Penaud, A., Pinochet, X., Brun, H., Gout, L., Delourme, R., Schmit, J., & Balesdent, M. H. (2003). A ten-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation towards the Rlm1 resistance gene in oilseed rape. European Journal of Plant Pathology, 109, 871–881.

    Article  CAS  Google Scholar 

  • Shetty, N. P., Jorgensen, H. J. L., Jensen, J. D., Collinge, D. B., & Shetty, H. S. (2008). Roles of reactive oxygen species in interactions between plants and pathogens. European Journal of Plant Pathology, 121, 267–280.

    Article  CAS  Google Scholar 

  • Sjödin, C., & Glimelius, K. (1988). Screening for resistance to blackleg Phoma lingam (Tode ex Fr.) Desm. Within Brassicaceae. Journal of Phytopathology, 123, 322–332.

    Article  Google Scholar 

  • Sprague, S.J., Balesdent, M.H., Brun, H., Hayden, H.L., Marcroft, S..J, Pinochet, X., Rouxel T., Howlett, B.J. 2006. Major gene resistance in Brassica napus (oilseed rape) is overcome by changes in virulence of populations of Leptosphaeria maculans in France and Australia. European Journal of Plant Pathology 114, 33–40.

  • Thurling, N., & Venn, L. A. (1977). Variation in the responses of rapeseed (Brassica napus and B. campestris) cultivars to blackleg (Leptosphaeria maculans) infection. Animal Production Science, 17, 445–451.

    Article  Google Scholar 

  • U, N. (1935). Genomic analysis of brassica with special reference to the experimental formation of B. napus and its peculiar mode of fertilization. Japanese Journal of Botany, 7, 389–452.

    Google Scholar 

  • Van de Wouw, A. P., Marcroft, S. J., Barbetti, M. J., Hua, L., Salisbury, P. A., Gout, L., Rouxel, T., Howlett, B. J. & Balesdent, M. H. (2009). Dual control of avirulence in Leptosphaeria maculans towards a Brassica napus cultivar with ‘sylvestris-derived’ resistance suggests involvement of two resistance genes. Plant Pathology, 58, 305–313.

  • Van de Wouw, A. P., Lowe, R. G. T., Elliott, C. E., Dubois, D. J., & Howlett, B. J. (2014). An avirulence gene, AvrLmJ1, from the blackleg fungus, Leptosphaeria maculans, confers avirulence to Brassica juncea cultivars. Molecular Plant Pathology, 15, 523–530.

    Article  CAS  PubMed  Google Scholar 

  • West, J. S., Balesdent, M. H., Rouxel, T., Narcy, J. P., Huang, Y. J., Roux, J., et al. (2002). Colonization of winter oilseed rape tissues by a/Tox+ and B/Tox0 Leptosphaeria maculans (phoma stem canker) in France and England. Plant Pathology, 51, 311–321.

    Article  Google Scholar 

  • Yi, G. E., Robin, A. H. K., Yang, K., Park, J. I., Kang, J. G., Yang, T. J., & Nou, I. S. (2015). Identification and expression analysis of Glucosinolate biosynthetic genes and estimation of Glucosinolate contents in edible organs of Brassica oleracea subspecies. Molecules, 20, 13089–13111.

    Article  CAS  PubMed  Google Scholar 

  • Yu, F., Lydiate, D. J., & Rimmer, S. R. (2005). Identification of two novel genes for blackleg resistance in Brassica napus. Theoretical and Applied Genetics, 110, 969–979.

    Article  CAS  PubMed  Google Scholar 

  • Yu, F., Lydiate, D.J., Hahn, K., Kuzmicz, S., Hammond, C., & Rimmer, S.R. (2007). Identification and mapping of a novel blackleg resistance locus LepR4 in the progenies from Brassica napus x B. rapa Subsp. sylvestris. Proc. 12th International Rapeseed Conference, Wuhan, China.

  • Yu, J., Zhao, M., Wang, X., Tong, C., Huang, S., Tehrim, S., Liu, Y., Hua, W., & Liu, S. (2013). Bolbase: A comprehensive genomics database for Brassica oleracea. BMC Genomics, 14, 664. doi:10.1186/1471-2164-14-664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., White, R. P., Demir, E., Jedryczka, M., Lange, R. M., Islam, M., et al. (2014). Leptosphaeria spp., phoma stem canker and potential spread of L. maculans on oilseed rape crops in China. Plant Pathology, 63, 598–612.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Asia Seed Co., Ltd., Republic of Korea for providing B. oleracea seeds. This study was supported by the Golden Seed Project (Center for Horticultural Seed Development) of the Ministry of Agriculture, Food and Rural Affairs in the Republic of Korea (MAFRA).

Author contributions

ISN, JIP and NUA conceived the study. IP provided microsatellite marker information; HB and NJL provided fungal isolates. AHKR designed and conducted the experiments. RL assisted AHKR in plant culture and management, sample preparation, DNA isolation, purification, and cloning. AHKR analyzed the data and wrote the manuscript. NJL, HB and IP edited the manuscript. All authors read the article and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ill-Sup Nou.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest exist for this research.

Electronic supplementary material

Fig. S1

Percent infected lobe of the individual cotyledons of the seedlings of 32 cabbage lines and five B. napus control lines 10 days post-inoculation with isolates 03–02 s and 00–100 s of L. maculans, respectively. Lines 33–37 respectively represent B. napus susceptible line TopasDH16516 and four introgresion lines, Topas-Rlm1, Topas-Rlm2, Topas-Rlm3 and Topas-Rlm4. Lines with more than 60% lobe diameter infected were considered susceptible. (DOCX 105 kb)

Fig. S2

Progression of blackleg disease infection (a) caused by 03–02 s isolate and (b) 00–100 s isolate in R (in squared boxes) and S lines (L) of cabbage. (DOCX 1414 kb)

Fig. S3

Banding profile of 32 cabbage lines in agarose gel electrophoresis (white bands in black background) and in QIAxcel (black bands in white background). Differences in band sizes were recorded from QIAxcel. (DOCX 7268 kb)

Fig. S4

Cloned and sequenced microsatellite marker regions of cabbage lines. (DOCX 33 kb)

Table S1

Thirty two cabbage inbred lines and five B. napus control lines used to screen for existence of Leptosphaeria maculans resistance gene in Brassica oleracea L. (DOCX 21 kb)

Table S2

Selected Resistant (R) and susceptible (S) cabbage inbred lines used to follow disease reactions at the seedling stage against two Leptosphaeria maculans isolates. (DOCX 20 kb)

Table S3

SSR markers with primer sequence collected from literature targeted to potential blackleg resistance genes in Brassica oleracea. Primer sequences were compared with the assembled genome sequence of B. oleracea using BLAST (Altschul et al. 1990). (DOCX 24 kb)

Table S4

Interaction between bioassay results with L. maculans isolates (a) 03–02 s and (b) (a) 00–100 s and microsatellite marker bands against specific resistant genes for 32 cabbage lines. R, resistant; MR, moderately resistant; I, intermediate; S, susceptible and HS, highly susceptible indicate status of interactions between each cabbage line and each fungal isolate. Plus (+) sign favours resistant polymorphic marker type and minus (−) sign indicates absence of resistant marker type. (DOCX 31 kb)

Table S5

(DOCX 21 kb)

ESM 1

(XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robin, A.H.K., Larkan, N.J., Laila, R. et al. Korean Brassica oleracea germplasm offers a novel source of qualitative resistance to blackleg disease. Eur J Plant Pathol 149, 611–623 (2017). https://doi.org/10.1007/s10658-017-1210-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1210-0

Keywords

Navigation