European Journal of Plant Pathology

, Volume 146, Issue 2, pp 245–257 | Cite as

Diversity and potential impact of Botryosphaeriaceae species associated with Eucalyptus globulus plantations in Portugal

  • Carla Barradas
  • Alan J. L. Phillips
  • António Correia
  • Eugénio Diogo
  • Helena Bragança
  • Artur AlvesEmail author


Eucalyptus globulus, a non-native species, is currently the most abundant forest species in Portugal. This economically important forest tree is exploited mainly for the production of pulp for the paper industry. The community of Botryosphaeriaceae species occurring on diseased and healthy E. globulus trees was studied on plantations throughout the country. Nine species from three different genera were identified, namely Botryosphaeria (B. dothidea), Diplodia (D. corticola and D. seriata) and Neofusicoccum (N. australe, N. algeriense, N. eucalyptorum, N. kwambonambiense, N. parvum and Neofusicoccum sp.). Of these, N. algeriense, D. corticola and D. seriata are reported for the first time on E. globulus, while N. algeriense, N. eucalyptorum and N. kwambonambiense correspond to first reports in Portugal. The genus Neofusicoccum was clearly dominant with N. australe and N. eucalyptorum being the most abundant species on both diseased and healthy trees. In artificial inoculation trials representative isolates from all nine species were shown to be pathogenic to E. globulus but there were marked differences in aggressiveness between them. Thus, D. corticola and N. kwambonambiense were the most aggressive while B. dothidea and D. seriata were the least aggressive of the species studied.


Botryosphaeria Diplodia Neofusicoccum Canker Dieback Endophytic 



This work was financed by European Funds through COMPETE and by National Funds through the Portuguese Foundation for Science and Technology (FCT) within project PANDORA (PTDC/AGR-FOR/3807/2012 – FCOMP-01-0124-FEDER-027979). The authors acknowledge FCT financing to CESAM (UID/AMB/50017/2013), Artur Alves (FCT Investigator Programme – IF/00835/2013) and Carla Barradas (PhD grant –SFRH/BD/77939/2011). The authors are thankful to Altri Florestal, SA for supplying diseased plant material from their plantations as well as the E. globulus clone used for pathogenicity trials.


  1. Alves, A., Barradas, C., Phillips, A. J. L., & Correia, A. (2013). Diversity of Botryosphaeriaceae species associated with conifers in Portugal. European Journal of Plant Pathology, 135, 791–804.CrossRefGoogle Scholar
  2. Alves, A., Correia, A., Luque, J., & Phillips, A. J. L. (2004). Botryosphaeria corticola sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph Diplodia mutila. Mycologia, 96, 598–613.CrossRefPubMedGoogle Scholar
  3. Alves, A., Linaldeddu, B. T., Deidda, A., Scanu, B., & Phillips, A. J. L. (2014). The complex of Diplodia species associated with Fraxinus and some other woody hosts in Italy and Portugal. Fungal Diversity, 67(1), 143–156.CrossRefGoogle Scholar
  4. Alves, A., Phillips, A. J. L., Henriques, I., & Correia, A. (2007). Rapid differentiation of species of Botryosphaeriaceae by PCR fingerprinting. Research in Microbiology, 158, 112–121.CrossRefPubMedGoogle Scholar
  5. Armengol, J., Gramaje, D., Perez-Sierra, A., Landeras, E., Alzugaray, R., Luque, J., & Martos, S. (2008). First report of canker disease caused by Neofusicoccum australe on Eucalyptus and pistachio in Spain. Plant Disease, 92, 980.CrossRefGoogle Scholar
  6. Barber, P. A., Burgess, T. J., Hardy, G. E., Slippers, B., Keane, P. J., & Wingfield, M. J. (2005). Botryosphaeria species from Eucalyptus in Australia are pleoanamorphic, producing Dichomera synanamorphs in culture. Mycological Research, 109(12), 1347–1363.CrossRefPubMedGoogle Scholar
  7. Begoude, B. A. D., Slippers, B., Wingfield, M. J., & Roux, J. (2010). Botryosphaeriaceae associated with Terminalia catappa in Cameroon, South Africa and Madagascar. Mycological Progress, 9(1), 101–123.CrossRefGoogle Scholar
  8. Berraf-Tebbal, A., Guerreiro, M. A., & Phillips, A. J. L. (2014). Phylogeny of Neofusicoccum species associated with grapevine trunk diseases in Algeria, with description of Neofusicoccum algeriense sp. nov. Phytopathologia Mediterranea, 53(3), 416–427.Google Scholar
  9. Bettucci, L., & Saravay, M. (1993). Endophytic fungi in Eucalyptus globulus: a preliminary study. Mycological Research, 97, 679–682.CrossRefGoogle Scholar
  10. Bettucci, L. & Alonso, R. (1997). A comparative study of fungal populations in healthy and symptomatic twigs of Eucalyptus grandis in Uruguay. Mycological Research, 101(9), 1060–1064.Google Scholar
  11. Burgess, T. I., Barber, P. A., & Hardy, G. E. S. J. (2005). Botryosphaeria spp. associated with eucalypts in Western Australia, including the description of Fusicoccum macroclavatum sp. nov. Australasian Plant Pathology, 34, 557–567.CrossRefGoogle Scholar
  12. Burgess, T. I., Sakalidis, M. L., & Hardy, G. E. S. J. (2006). Gene flow of the canker pathogen Botryosphaeria australis between Eucalyptus globulus plantations and native eucalypt forests in Western Australia. Austral Ecology, 31, 559–566.CrossRefGoogle Scholar
  13. Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91, 553–556.CrossRefGoogle Scholar
  14. Chen, S. F., Pavlic, D., Roux, J., Slippers, B., Xie, Y. J., Wingfield, M. J., & Zhou, X. D. (2011). Characterization of Botryosphaeriaceae from plantation-grown Eucalyptus species in South China. Plant Pathology, 60, 739–751.CrossRefGoogle Scholar
  15. Chungu, D., Muimba-Kankolongo, A., Wingfield, M. J. & Roux, J. (2010). Identification of fungal pathogens occurring in eucalypt and pine plantations in Zambia by comparing DNA sequences. Forestry, 83(5), 507–515.Google Scholar
  16. Gezahgne, A., Roux, J., Slippers, B., & Wingfield, M. J. (2004). Identification of the causal agent of Botryosphaeria stem canker in Ethiopian Eucalyptus plantations. South African Journal of Botany, 70(2), 241–248.CrossRefGoogle Scholar
  17. ICNF, (2013). IFN6 – Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares. [pdf], 34 pp. Instituto da Conservação da Natureza e das Florestas. Lisboa.Google Scholar
  18. Iturritxa, E., Slippers, B., Mesanza, N., & Wingfield, M. J. (2011). First report of Neofusicoccum parvum causing canker and die-back of Eucalyptus in Spain. Australasian Plant Disease Notes, 6, 57–59.CrossRefGoogle Scholar
  19. Linaldeddu, B. T., Scanu, B., Maddau, L., & Franceschini, A. (2014). Diplodia corticola and Phytophthora cinnamomi: the main pathogens involved in holm oak decline on Caprera Island (Italy). Forest Pathology, 44(3), 191–200.CrossRefGoogle Scholar
  20. Lynch, S. C., Eskalen, A., Zambino, P. J., Mayorquin, J. S., & Wang, D. H. (2013). Identification and pathogenicity of Botryosphaeriaceae species associated with coast live oak (Quercus agrifolia) decline in southern California. Mycologia, 105(1), 125–140.CrossRefPubMedGoogle Scholar
  21. Mohali, S. R., Slippers, B., & Wingfield, M. J. (2007). Identification of Botryosphaeriaceae from Eucalyptus, Acacia and Pinus in Venezuela. Fungal Diversity, 25, 103–125.Google Scholar
  22. Mohali, S. R., Slippers, B., & Wingfield, M. J. (2009). Pathogenicity of seven species of the Botryosphaeriaceae on Eucalyptus clones in Venezuela. Australasian Plant Pathology, 38, 135–140.CrossRefGoogle Scholar
  23. Page, R. D. (1996). TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 12, 357–358.PubMedGoogle Scholar
  24. Pavlic, D., Slippers, B., Coutinho, T. A. & Wingfield, M.J. (2007). Botryosphaeriaceae occurring on native Syzygium cordatum in South Africa and their potential threat to Eucalyptus. Plant Pathology, 56, 624–636.Google Scholar
  25. Pavlic, D., Slippers, B., Coutinho, T. A., & Wingfield, M. J. (2009a). Multiple gene genealogies and phenotypic data reveal cryptic species of the Botryosphaeriaceae: A case study on the Neofusicoccum parvum/N. ribis complex. Molecular Phylogenetics and Evolution, 51(2), 259–268.CrossRefPubMedGoogle Scholar
  26. Pavlic, D., Slippers, B., Coutinho, T. A., & Wingfield, M. J. (2009b). Molecular and phenotypic characterization of three phylogenetic species discovered within the Neofusicoccum parvum/N. ribis complex. Mycologia, 101(5), 636–647.CrossRefPubMedGoogle Scholar
  27. Pérez, C. A., Wingfield, M. J., Slippers, B., Altier, N. A., & Blanchette, R. A. (2009). Neofusicoccum eucalyptorum, a Eucalyptus pathogen, on native Myrtaceae in Uruguay. Plant Pathology, 58(5), 964–970.CrossRefGoogle Scholar
  28. Pérez, C. A., Wingfield, M. J., Slippers, B., Altier, N. A., & Blanchette, R. A. (2010). Endophytic and canker-associated Botryosphaeriaceae occurring on non-native Eucalyptus and native Myrtaceae trees in Uruguay. Fungal Diversity, 41(1), 53–69.CrossRefGoogle Scholar
  29. Phillips, A. J. L., Alves, A., Abdollahzadeh, J., Slippers, B., Wingfield, M. J., Groenewald, J. Z., & Crous, P. W. (2013). The Botryosphaeriaceae: genera and species known from culture. Studies in Mycology, 76, 51–167.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Phillips, A. J. L., Alves, A., Correia, A., & Luque, J. (2005). Two new species of Botryosphaeria with brown, 1-septate ascospores and Dothiorella anamorphs. Mycologia, 97, 513–529.CrossRefPubMedGoogle Scholar
  31. Phillips, A. J. L., Lopes, J., Abdollahzadeh, J., Bobev, S., & Alves, A. (2012). Resolving the complex of Diplodia species on apple and other Rosaceae hosts. Persoonia, 29, 29–38.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pillay, K., Slippers, B., Wingfield, M. J., & Gryzenhout, M. (2013). Diversity and distribution of co-infecting Botryosphaeriaceae from Eucalyptus grandis and Syzygium cordatum in South Africa. South African Journal of Botany, 84, 38–43.CrossRefGoogle Scholar
  33. Rodas, C. A., Slippers, B., Gryzenhout, M., & Wingfield, M. J. (2009). Botryosphaeriaceae associated with Eucalyptus canker diseases in Colombia. Forest Pathology, 39, 110–123.CrossRefGoogle Scholar
  34. Ronquist, F. R., & Huelsenbeck, J. P. (2003). MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.CrossRefPubMedGoogle Scholar
  35. Sakalidis, M. L., Hardy, G. E. S. J., & Burgess, T. I. (2011). Use of the Genealogical Sorting Index (GSI) to delineate species boundaries in the Neofusicoccum parvumNeofusicoccum ribis species complex. Molecular Phylogenetics and Evolution, 60, 333–344.CrossRefPubMedGoogle Scholar
  36. Sakalidis, M. L., Slippers, B., Wingfield, B. D., Hardy, G. E. S. J., & Burgess, T. I. (2013). The challenge of understanding the origin, pathways and extent of fungal invasions: global populations of the Neofusicoccum parvumN. ribis species complex. Diversity and Distributions, 19(8), 873–883.CrossRefGoogle Scholar
  37. Silva, M., Machado, H., & Phillips, A. J. L. (2009). Mycosphaerella species occurring on Eucalyptus globulus in Portugal. European Journal of Plant Pathology, 125(3), 425–433.CrossRefGoogle Scholar
  38. Slippers, B., Burgess, T., Pavlic, D., Ahumada, R., Maleme, H., Mohali, et al. (2009). A diverse assemblage of Botryosphaeriaceae infect Eucalyptus in native and non-native environments. Southern Forests: a Journal of Forest Science, 71, 101–110.Google Scholar
  39. Slippers, B., Crous, P. W., Denman, S., Coutinho, T. A., Wingfield, B. D., & Wingfield, M. J. (2004a). Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as. Botryosphaeria dothidea. Mycologia, 96(1), 83–101.CrossRefPubMedGoogle Scholar
  40. Slippers, B., Fourie, G., Crous, P. W., Coutinho, T. A., Wingfield, B. D., Carnegie, A. J., & Wingfield, M. J. (2004b). Speciation and distribution of Botryosphaeria spp. on native and introduced Eucalyptus trees in Australia and South Africa. Studies in Mycology, 50, 343–358.Google Scholar
  41. Slippers, B., Johnson, G. I., Crous, P. W., Coutinho, T. A., Wingfield, B. D., & Wingfield, M. J. (2005). Phylogenetic and morphological re-evaluation of the Botryosphaeria species causing diseases of Mangifera indica. Mycologia, 97(1), 99–110.CrossRefPubMedGoogle Scholar
  42. Slippers, B., & Wingfield, M. J. (2007). Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews, 21, 90–106.CrossRefGoogle Scholar
  43. Smith, H., Crous, P. W., Wingfield, M. J., Coutinho, T. A., & Wingfield, B. D. (2001). Botryosphaeria eucalyptorum sp. nov., a new species in the B. dothidea-complex on Eucalyptus in South Africa. Mycologia, 93(2), 277–285.CrossRefGoogle Scholar
  44. Smith, H., Kemp, G. H. J., & Wingfield, M. J. (1994). Canker and die-back of Eucalyptus in South Africa caused by Botryosphaeria dothidea. Plant Pathology, 43, 1031–1034.CrossRefGoogle Scholar
  45. Smith, H., Wingfield, M. J., & Petrini, O. (1996). Botryosphaeria dothidea endophytic in Eucalyptus grandis and Eucalyptus nitens in South Africa. Forest Ecology and Management, 89, 189–195.CrossRefGoogle Scholar
  46. Sousa da Câmara, M. E. (1929). Contributiones ad mycofloram Lusitaniae. Centuriae VIII et IX. Anais do Instituto Superior de Agronomia, 3, 59–141.Google Scholar
  47. Sutton, B. C., & Dyko, B. J. (1989). Revision of Hendersonula. Mycological Research, 93, 466–488.CrossRefGoogle Scholar
  48. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Taylor, K., Barber, P. A., Hardy, G. E. S. J., & Burgess, T. J. (2009). Botryosphaeriaceae from tuart (Eucalyptus gomphocephala) woodland, including descriptions of four new species. Mycological Research, 113, 337–353.CrossRefPubMedGoogle Scholar
  50. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.CrossRefPubMedCentralGoogle Scholar
  51. Úrbez-Torres, J. R., Peduto, F., Rooney-Latham, S., & Gubler, W. D. (2010). First report of Diplodia corticola causing grapevine (Vitis vinifera) cankers and trunk cankers and dieback of Canyon Live Oak (Quercus chrysolepis) in California. Plant Disease, 94(6), 785.Google Scholar
  52. Varela, C. P., Fernández, V. R., Casal, O. A., & Vázquez, J. P. M. (2011). First report of cankers and dieback caused by Neofusicoccum mediterraneum and Diplodia corticola on grapevine in Spain. Plant Disease, 95(10), 1315.CrossRefGoogle Scholar
  53. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplified and direct sequencing of fungal ribosomal RNA genes for phylogenies. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego: Academic Press.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • Carla Barradas
    • 1
  • Alan J. L. Phillips
    • 2
  • António Correia
    • 1
  • Eugénio Diogo
    • 3
  • Helena Bragança
    • 3
  • Artur Alves
    • 1
    Email author
  1. 1.Departamento de BiologiaCESAM, Universidade de AveiroAveiroPortugal
  2. 2.UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  3. 3.Instituto Nacional de Investigação Agrária e VeterináriaOeirasPortugal

Personalised recommendations