Skip to main content

Advertisement

Log in

Copper resistance genes from different xanthomonads and citrus epiphytic bacteria confer resistance to Xanthomonas citri subsp. citri

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Genetic exchange is considered to be an important process in the selective adaptation of microorganisms to shifting and challenging environmental conditions. As a consequence of the copious use of copper bactericides, many species of plant pathogenic bacteria, including Xanthomonas citri subsp. citri (Xcc), have developed resistance to copper. This study assesses whether copper resistant (CuR) strains of other Xanthomonas species and citrus epiphytic bacteria pose a risk for the development of copper resistance in Xcc. CuR epiphytic bacteria were isolated on MGY agar from citrus leaves collected in two citrus groves treated with copper bactericides in Florida. Horizontal gene transfer of copper resistance genes was investigated within different Xanthomonas species and from citrus epiphytic bacteria to Xanthomonas. CuR epiphytic bacteria from citrus were screened for the presence of copper resistance genes homologous to copL, copA and copB genes from Xcc and characterized regarding tolerance to copper. Copper resistance determinants from a citrus epiphytic strain of Stenotrophomonas maltophilia (Stm) were cloned and expressed in Xcc and other Xanthomonas strains. Copper resistance genes in Xcc were determined to be present on a large (~300 kb) conjugative plasmid. Cu resistance was transferred via conjugation from two copper resistant citrus strains, Xcc and X. alfalfae subsp. citrumelonis (Xac), and two tomato pathogens, X. euvesicatoria (Xe) and X. perforans (Xp), to Xcc. PCR analysis revealed that two CuR strains from citrus, an epiphytic Xanthomonas ssp. and a strain of Stm, harboured homologs of the copper resistance genes found in CuR Xcc. The introduction of copLAB gene cluster from Stm into different xanthomonads conferred copper resistance to sensitive strains of Xcc, Xac, Xe and Xp. Based on these results there is a low, but significant, likelihood of horizontal gene transfer of copper resistance genes from other xanthomonads or epiphytic bacteria to Xcc in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Basim, H., Stall, R. E., Minsavage, G. V., & Jones, J. B. (1999). Chromosomal gene transfer by conjugation in the plant pathogen Xanthomonas axonopodis pv. vesicatoria. Phytopathology, 89, 1044–1049.

    Article  PubMed  CAS  Google Scholar 

  • Basim, H., Minsavage, G. V., Stall, R. E., Wang, J. F., Shanker, S., & Jones, J. B. (2005). Characterization of a unique chromosomal copper resistance gene cluster from Xanthomonas campestris pv. vesicatoria. Applied and Environmental Microbiology, 71, 8284–8291.

    Article  PubMed  CAS  Google Scholar 

  • Behlau, F., Amorim, L., Belasque, J., Jr., Bergamin Filho, A., Leite, R. P., Jr., Graham, J. H., & Gottwald, T. R. (2010a). Annual and polyetic progression of citrus canker on trees protected with copper sprays. Plant Pathology, 59, 1031–1036.

    Article  Google Scholar 

  • Behlau, F., Belasque, J., Jr., Graham, J. H., & Leite, R. P., Jr. (2010b). Effect of frequency of copper applications on control of citrus canker and the yield of young bearing sweet orange trees. Crop Protection, 29, 300–305.

    Article  CAS  Google Scholar 

  • Behlau, F., Canteros, B. I., Minsavage, G. V., Jones, J. B., & Graham, J. H. (2011). Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfafae subsp. citrumelonis. Applied and Environmental Microbiology, 77, 4089–4096.

    Article  PubMed  CAS  Google Scholar 

  • Behlau, F., Jones, J. B., Myers, M. E., & Graham, J. H. (2012). Monitoring for resistant populations of Xanthomonas citri subsp. citri and epiphytic bacteria on citrus trees treated with copper or streptomycin using a new semi-selective medium. European Journal of Plant Pathology, 132, 259–270.

    Article  Google Scholar 

  • Bender, C. L., Malvick, D. K., Conway, K. E., George, S., & Cooksey, D. A. (1990). Characterization of pXv10A, a copper resistance plasmid in Xanthomonas campestris pv. vesicatoria. Applied and Environmental Microbiology, 56, 170–175.

    PubMed  CAS  Google Scholar 

  • Bjorklof, K., Nurmiaho-Lassila, E. L., Klinger, N., Haahtela, K., & Romantschuk, M. (2000). Colonization strategies and conjugal gene transfer of inoculated Pseudomonas syringae on the leaf surface. Journal of Applied Microbiology, 89, 423–432.

    Article  PubMed  CAS  Google Scholar 

  • Boles, B. R., & Singh, P. K. (2008). Endogenous oxidative stress produces diversity and adaptability in biofilm communities. PNAS, 105, 12503–12508.

    Article  PubMed  CAS  Google Scholar 

  • Boles, B. R., Thoeandal, M., & Singh, P. K. (2004). Self-generated diversity produces “insurance effects” in biofilm communities. PNAS, 101, 16630–16635.

    Article  PubMed  CAS  Google Scholar 

  • Canteros, B. I. (1999). Copper resistance in Xanthomonas campestris pv. citri. In A. Mahadevan (Ed.), Plant pathogenic bacteria. Proceedings of the International Society of Bacteriology (pp. 455–459). Chennai: Centre for Advanced Study in Botany, University of Madras.

    Google Scholar 

  • Canteros, B. I., Minsavage, G. V., Jones, J. B., & Stall, R. E. (1995). Diversity of plasmids in Xanthomonas campestris pv. vesicatoria. Phytopathology, 85, 1482–1486.

    Article  Google Scholar 

  • Canteros, B. I., Rybak, M., Gochez, A., Velazquez, P., Rivadeneira, M., Mitidieri, M., Garran, S., & Zequeira, L. (2008). Occurrence of copper resistance in Xanthomonas axonopodis pv. citri in Argentina. Phytopathology, 98, S30.

    Google Scholar 

  • Canteros, B. I., Gochez, A. M., Rybak, M., Minsavage, G. V., Jones, J. B., Stall, R. E. (2010). Management and characterization of plasmid-encoded copper resistance in Xanthomonas axonopodis pv. citri. In Proceedings of the 12th International Conference on Plant Pathogenic Bacteria, Reunion Island, France (p. 145).

  • Cervantes, C., & Gutierrez-Corona, F. (1994). Copper resistance mechanisms in bacteria and fungi. FEMS Microbiology Reviews, 14, 121–137.

    Article  PubMed  CAS  Google Scholar 

  • Cooksey, D. A. (1987). Characterization of a copper resistance plasmid conserved in copper-resistant strains of Pseudomonas syringae pv. tomato. Applied and Environmental Microbiology, 53, 454–456.

    PubMed  CAS  Google Scholar 

  • Cooksey, D. A. (1990). Genetics of bactericide resistance in plant pathogenic bacteria. Annual Review of Phytopathology, 28, 201–219.

    Article  CAS  Google Scholar 

  • Cooksey, D. A. (1993). Copper uptake and resistance in bacteria. Molecular Microbiology, 7, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Cooksey, D. A., & Azad, H. R. (1992). Accumulation of copper and other metals by copper-resistant plant-pathogenic and saprophytic pseudomonads. Applied and Environmental Microbiology, 58, 274–278.

    PubMed  CAS  Google Scholar 

  • Cooksey, D. A., Azad, H. R., Cha, J.-S., & Lim, C.-K. (1990). Copper resistance gene homologs in pathogenic and saprophytic bacterial species from tomato. Applied and Environmental Microbiology, 56, 431–435.

    PubMed  CAS  Google Scholar 

  • Coplin, D. L., Rowan, R. G., Chisholm, D. A., & Whitmoyer, R. E. (1981). Characterization of plasmids in Erwinia stewartii. Applied and Environmental Microbiology, 42, 599–604.

    PubMed  CAS  Google Scholar 

  • Figurski, D. H., & Helinski, D. R. (1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proceedings of the National Academy of Sciences, 76, 1648–1652.

    Article  CAS  Google Scholar 

  • Garcia-Horsman, J. A., Barquera, B., Rumbley, R., Ma, J., & Gennis, R. B. (1994). The superfamily of heme-copper respiratory oxidases. Journal of Bacteriology, 176, 5587–5600.

    PubMed  CAS  Google Scholar 

  • Gottwald, T. R., & Timmer, L. W. (1995). The efficacy of windbreaks in reducing the spread of citrus canker caused by Xanthomonas campestris pv. citri. Tropical Agriculture, 72, 194–201.

    Google Scholar 

  • Graham, J. H., Drouillard, D. L., Bannwart, D. L., & Dilley, J. R. (1999). Bud failure on Swingle citrumelo in a Florida citrus nursery caused by Xanthomonas axonopodis pv. citrumelo. Proceedings of the Florida State Horticultural Society, 112, 60–68.

    Google Scholar 

  • Graham, J. H., Gottwald, T. R., Cubero, J., & Achor, D. S. (2004). Xanthomonas axonopodis pv. citri: Factors affecting successful eradication of citrus canker. Molecular Plant Pathology, 5, 1–15.

    Article  PubMed  Google Scholar 

  • Graham, J. H., Leite, R. P., Jr., Yonce, H. D., & Myers, M. (2008). Streptomycin controls citrus canker on sweet orange in Brazil and reduces risk of copper burn on grapefruit in Florida. Proceedings of the Florida State Horticultural Society, 121, 118–123.

    Google Scholar 

  • Graham, J. H., Dewdney, M. M., & Myers, M. E. (2010). Streptomycin and copper formulations for control of citrus canker on grapefruit. Proceedings of the Florida State Horticultural Society, 123, 92–98.

    Google Scholar 

  • Graham, J. H., & Myers, M. E. (2011). Soil application of SAR inducers imidacloprid, thiamethoxam, and acibenzolar-S-methyl for citrus canker control in young grapefruit trees. Plant Disease, 95, 725–728.

    Google Scholar 

  • Han, X. Y. (2006). Bacterial identification based on 16S ribosomal RNA gene sequence analysis. In Y.-W. Tang & C. Stratton (Eds.), Advanced techniques in diagnostic microbiology (pp. 323–332). New York: Springer.

    Chapter  Google Scholar 

  • Huang, T. C., & Burr, T. J. (1999). Characterization of plasmids that encodestreptomycin resistance in bacterial epiphytes of apple. Journal of Applied Microbiology, 86, 741–751.

    Article  PubMed  CAS  Google Scholar 

  • Kado, C. I., & Liu, S. T. (1981). Rapid procedure for detection and isolation of large and small plasmids. Journal of Bacteriology, 145, 1365–1373.

    PubMed  CAS  Google Scholar 

  • Kroer, N., Barkay, T., Sorensen, S., & Weber, D. (1998). Effect of root exudates and bacterial metabolic activity on conjugal gene transfer in the rhizosphere of a marsh plant. FEMS Microbiology Ecology, 25, 375–384.

    Article  CAS  Google Scholar 

  • Lee, Y. A., Hendson, M., Panapoulos, N. J., & Schroth, M. N. (1994). Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: Homology with small blue copper proteins and multicopper oxidase. Journal of Bacteriology, 176, 173–188.

    PubMed  CAS  Google Scholar 

  • Leite Jr., R. P., & Mohan, S. K. (1990). Integrated management of citrus bacterial canker disease caused by Xanthomonas campestris pv. citri in the State of Paraná, Brazil. Crop Protection, 9, 3–7.

  • Lilley, A. K., & Bailey, M. J. (1997). The acquisition of indigenous plasmids by a genetically marked pseudomonad population colonizing the sugar beet phytosphere is related to local environmental conditions. Applied and Environmental Microbiology, 63, 1577–1583.

    PubMed  CAS  Google Scholar 

  • Lilley, A. K., Fry, J. C., Day, M. J., & Bailey, M. J. (1994). In situ transfer of an exogenously isolated plasmid between Pseudomonas spp. in sugar beet rhizosphere. Microbiology, 140, 27–33.

    Article  CAS  Google Scholar 

  • Lim, C., & Cooksey, D. A. (1993). Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae. Journal of Bacteriology, 175, 4492–4498.

    PubMed  CAS  Google Scholar 

  • Lindow, S. E., & Leveau, J. H. J. (2002). Phyllosphere microbiology. Current Opinion in Biotechnology, 13, 238–243.

    Article  PubMed  CAS  Google Scholar 

  • Mellano, M. A., & Cooksey, D. A. (1988). Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. Journal of Bacteriology, 170, 2879–2883.

    PubMed  CAS  Google Scholar 

  • Minsavage, G. V., Canteros, B. I., & Stall, R. E. (1990). Plasmid-mediated resistance to streptomycin in Xanthomonas campestris pv. vesicatoria. Phytopathology, 80, 719–723.

    Article  CAS  Google Scholar 

  • Norelli, J. L., Burr, T. J., Lo Cicero, A. M., Gilbert, M. T., & Katz, B. H. (1991). Homologous streptomycin resistance gene present among diverse gram-negative bacteria in New York State apple orchards. Applied and Environmental Microbiology, 57, 486–491.

    PubMed  CAS  Google Scholar 

  • Pruvost, O., Hartung, J. S., Civerolo, E. L., Dubois, C., & Perrier, X. (1992). Plasmid DNA fingerprints distinguish pathotypes of Xanthomonas campestris pv. citri, the causal agent of citrus bacterial canker disease. Phytopathology, 82, 485–490.

    Article  CAS  Google Scholar 

  • Rigano, L. A., Siciliano, F., Enrique, R., Sendin, L., Filippone, P., Torres, P. S., Questa, J., Dow, J. M., Castagnaro, A. P., Vojnov, A. A., & Marano, M. R. (2007). Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Molecular Plant-Microbe Interactions, 20, 1222–1230.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). Plainview: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Stall, R. E., Loschke, D. C., & Jones, J. B. (1986). Linkage of copper resistance and avirulence loci on a self-transmissible plasmid in Xanthomonas campestris pv. vesicatoria. Phytopathology, 76, 240–243.

    Article  CAS  Google Scholar 

  • Staskawicz, B., Dahlbeck, D., Keen, N., & Napoli, C. (1987). Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. Journal of Bacteriology, 169, 5789–5794.

    PubMed  CAS  Google Scholar 

  • Sundin, W. (2002). Distinct recent lineages of the strA- strB streptomycin-resistance genes in clinical and environmental bacteria. Current Microbiology, 45, 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Sundin, G. W., Jones, A. L., & Fulbright, D. W. (1989). Copper resistance in Pseudomonas syringae pv. syringae from cherry orchards and its associated transfer in vitro and in planta with a plasmid. Phytopathology, 79, 861–865.

    Article  CAS  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Turner, P., Barber, C., & Daniels, M. (1984). Behaviour of the transposons Tn5 and Tn7 in Xanthomonas campestris pv. campestris. Molecular and General Genetics, 195, 101–107.

    Article  CAS  Google Scholar 

  • Voloudakis, A. E., Bender, C. L., & Cooksey, D. A. (1993). Similarity between copper resistance genes from Xanthomonas campestris and Pseudomonas syringae. Applied and Environmental Microbiology, 59, 1627–1634.

    PubMed  CAS  Google Scholar 

  • Voloudakis, A. E., Reignier, T. M., & Cooksey, D. A. (2005). Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Applied and Environmental Microbiology, 71, 782–789.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for support of Franklin Behlau by the Hunt Brothers Fellowship and to the Citrus Research and Development Foundation for grant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Graham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behlau, F., Canteros, B.I., Jones, J.B. et al. Copper resistance genes from different xanthomonads and citrus epiphytic bacteria confer resistance to Xanthomonas citri subsp. citri . Eur J Plant Pathol 133, 949–963 (2012). https://doi.org/10.1007/s10658-012-9966-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-9966-8

Keywords

Navigation