Skip to main content
Log in

Xanthomonas citri infecting teak (Tectona grandis) in Brazil, characterization and copper resistance

  • Original Article
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

Xanthomonas is a bacterial genus that comprises various plant pathogenic species responsible for losses in economically important crops. Between 2016 and 2018, several strains of Xanthomonas were isolated from teak seedlings, from two production sites, displaying bacterial leaf spot symptoms. Through BOX-PCR molecular marker, a clonal nature of these isolates was confirmed among the 26 isolates. Of those, two isolates, UnB-Xtec2D and UnB-XtecTg02(2), were sequenced and presented characteristics similar to other Xanthomonas. Average nucleotide identity identified all isolates as Xanthomonas citri. Multilocus Sequence analysis with a seven gene scheme and phylogenomic with non-recombinant SNPs sites showed teak isolates as closely related to pathovar fuscans and aurantifolii. Type 3 Secretion System Effectors had a unique profile for isolates originally from teak, also, identified recombination regions matched the position of 11 effectors. Host range studies with Phaseolus vulgaris (common bean), Corymbia citriodora (lemon-scented gum), Vigna unguiculata (cowpea), Eucalyptus urograndis (eucalypt) and Citrus latifolia (Tahiti lime) showed teak isolates as capable of causing symptoms on P. vulgaris and C. citriodora aside from teak. None of the isolates presented genes associated with copper resistance or could grow in copper-amended culture media. The probable origin of this Xanthomonas capable of infecting teak is distant from pv. melhusii, originally found in teak plants in India, with a likelihood of being another existing pathovar, as fuscans or aurantifolii which could have suffered a host jump or a new insertion within Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The genomic sequences generated and analyzed during the current study are available in GenBank/NCBI repository, Bioproject PRJNA561801, accession number NZ_CP048044.1 (isolate UnB-Xtec2D) and accession NZ_CP048712.1 [isolate UnB-XtecTg02(2)]. In addition, both strains are deposited/available at Universidade de Brasília's Collection, in Bacteriology Laboratory from Plant Pathology Department.

References

  • Adriko J, Mbega ER, Mortensen CN, Wulff EG, Tushemereirwe WK, Kubiriba J, Lund OS (2014) Improved PCR for identification of members of the genus Xanthomonas. European Journal of Plant Pathology 138:293–306

    CAS  Google Scholar 

  • Araújo ER, Costa J, Ferreira MSVF, Quezado-Duval AM (2017) Widespread distribution of Xanthomonas perforans and limited presence of X. gardneri in Brazil. Plant Pathology 66:159–168

    Google Scholar 

  • Araújo ER, Costa JR, Pontes NC, Quezado-Duval AM (2015) Xanthomonas perforans and X. gardneri associated with bacterial leaf spot on weeds in Brazilian tomato fields. European Journal of Plant Pathology 143:543–548

    Google Scholar 

  • Arias SL, Block CC, Mayfield DA, Santillana G, Stulberg MJ, Broders KD, Jackson-Ziems TA, Munkvold GP (2020) Occurrence in seeds and potential seed transmission of Xanthomonas vasicola pv. vasculorum in maize in the United States. Phytopathology 110:1139–1146

    CAS  PubMed  Google Scholar 

  • Aritua V, Harrison J, Sapp M, Buruchara R, Smith J, Studholme DJ (2015) Genome sequencing reveals a new lineage associated with lablab bean and genetic exchange between Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans. Frontiers in Microbiology 6:1080

  • Aritua V, Nanyonjo A, Kumakech F, Tushemereirwe W (2007) Rep-PCR reveals a high genetic homogeneity among Ugandan isolates of Xanthomonas campestris pv musacearum. African Journal of Biotechnology 6:179–183

    CAS  Google Scholar 

  • Arshiya M, Suryawanshi A, More D, Baig MMV (2014) Repetitive PCR based detection of genetic diversity in Xanthomonas axonopodis pv citri strains. Journal of Applied Biology e Biotechnology 2(01):017–022

    CAS  Google Scholar 

  • Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Research 44:W147–W153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal K, Midha S, Kumar S, Patil PBJA, Microbiology E (2017) Ecological and evolutionary insights into Xanthomonas citri pathovar diversity. Journal of Applied Environmental Microbiology 83:e02993-e2916

    CAS  PubMed  Google Scholar 

  • Behlau F, Gochez AM, Jones JB (2020) Diversity and copper resistance of Xanthomonas affecting citrus. Tropical Plant Pathology 45:200–212

    Google Scholar 

  • Behlau F, Hong JC, Jones JB, Graham JH (2013) Evidence for acquisition of copper resistance genes from different sources in citrus-associated xanthomonads. Phytopathology 103:409–418

    CAS  PubMed  Google Scholar 

  • Boiteux LS, Fonseca MEN, Simon PW (1999) Effects of plant tissue and DNA purification method on randomly amplified polymorphic DNA-based genetic fingerprinting analysis in carrot. Journal of the American Society for Horticultural Science 124:32–38

    CAS  Google Scholar 

  • Bophela K, Venter S, Wingfield M, Duran A, Tarigan M, Coutinho T (2019) Xanthomonas perforans: a tomato and pepper pathogen associated with bacterial blight and dieback of Eucalyptus pellita seedlings in Indonesia. Australasian Plant Pathology 48:543–551

    CAS  Google Scholar 

  • Borges RCF, Fontes MG, Macedo MAD, Lima MF, Boiteux LS, Fonseca MEN (2019a) First report of Tomato chlorosis virus infecting Tectona grandis associated with infestation of Bemisia tabaci Mediterranean in central Brazil. Plant Disease 103:2704

  • Borges R, Santos M, Macedo M, Martins I, Nascimento A, Café Filho A, Boiteux L, Fonseca M, Inácio C, De Mello S (2015) A trunk canker disease of Tectona grandis induced by Lasiodiplodia theobromae in Brazil. New Disease Reports 31:1

    Google Scholar 

  • Borges RCF, Rossato M, Albuquerque GMR, Ferreira MA, Brasileiro AC, Fonseca MEN, Boiteux LS (2019b) Crown gall caused by Agrobacterium tumefaciens species complex: a novel nursery disease of Tectona grandis in Brazil. Journal of Plant Pathology 101:445–445

    Google Scholar 

  • Borges RCF, Rossato M, Santos MD, Cabral CS, Albuquerque GMR, Ferreira MA, Fonseca MEN, Boiteux LS (2018) A leaf spot of Tectona grandis caused by Xanthomonas fuscans in Brazil. Journal of Plant Pathology 101:431

  • Brunings AM, Gabriel DW (2003) Xanthomonas citri: breaking the surface. Molecular Plant Pathology 4:141–157

  • Büttner D, He SY (2009) Type III protein secretion in plant pathogenic bacteria. Plant Physiology 150:1656–1664

    PubMed  PubMed Central  Google Scholar 

  • Cabral P, Capucho A, Pereira O, Maciel-Zambolim E, Freitas R, Zambolim L (2010) First report of teak leaf rust disease caused by Olivea tectonae in Brazil. Australasian Plant Disease Notes 5:113–114

    Google Scholar 

  • Constantin E, Cleenwerck I, Maes M, Baeyen S, Van Malderghem C, De Vos P, Cottyn B (2016) Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathology 65:792–806

    CAS  Google Scholar 

  • Cook A, Stall R (1969) Differentiation of pathotypes among isolates of Xanthomonas vesicatoria. Plant Disease Reporter. 53:617–619

    Google Scholar 

  • Coutinho T, Van Der Westhuizen L, Roux J, Mcfarlane S, Venter S (2015) Significant host jump of Xanthomonas vasicola from sugarcane to a Eucalyptus grandis clone in South Africa. Plant Pathology 64:576–581

    CAS  Google Scholar 

  • Coutinho TA, Wingfield MJ (2017) Ralstonia solanacearum and R. pseudosolanacearum on Eucalyptus: Opportunists or Primary Pathogens? Frontiers in Plant Science 8:761

  • Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, Parkhill J, Harris SR (2015) Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Research 43:e15–e15

    PubMed  Google Scholar 

  • Darrasse A, Barret M, Cesbron S, Compant S, Jacques M-A (2018) Niches and routes of transmission of Xanthomonas citri pv. fuscans to bean seeds. Plant and Soil 422:115–128

    CAS  Google Scholar 

  • de Paiva BAR, Wendland A, Rossato M, Ferreira MASV (2022) Virulence and type III effector diversities of Xanthomonas citri pv. fuscans and X. phaseoli pv. phaseoli in Brazil. Journal of Phytopathology 170:1–14

  • Dixit PD, Pang TY, Maslov S (2017) Recombination-Driven Genome Evolution and Stability of Bacterial Species. Genetics 207:281–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Escalon A, Javegny S, Verniere C, Noel LD, Vital K, Poussier S, Hajri A, Boureau T, Pruvost O, Arlat M, Gagnevin L (2013) Variations in type III effector repertoires, pathological phenotypes and host range of Xanthomonas citri pv. citri pathotypes. Molecular Plant Pathology 14:483–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferraz HGM, Badel JL, Da Silva Guimaraes LM, Reis BP, Totola MR, Goncalves RC, Alfenas AC (2018) Xanthomonas axonopodis pv. eucalyptorum pv. nov. causing bacterial leaf blight on eucalypt in Brazil. Plant Pathology Journal 34:269–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira M, Bonneau S, Briand M, Cesbron S, Portier P, Darrasse A, Gama MaS, Barbosa MaG, Mariano RLR, Souza EB, Jacques MA (2019) Xanthomonas citri pv. viticola affecting grapevine in Brazil: Emergence of a successful monomorphic pathogen. Frontiers in Plant Science 10:489

  • Firmino AC, Tozze H Jr, Furtado EL (2012) First report of Ceratocystis fimbriata causing wilt in Tectona grandis in Brazil. New Disease Reports 25:2044–588

    Google Scholar 

  • Gordon JL, Lefeuvre P, Escalon A, Barbe V, Cruveiller S, Gagnevin L, Pruvost O (2015) Comparative genomics of 43 strains of Xanthomonas citri pv. citri reveals the evolutionary events giving rise to pathotypes with different host ranges. BMC Genomics 16:1–20

    Google Scholar 

  • Grau J, Reschke M, Erkes A, Streubel J, Morgan RD, Wilson GG, Koebnik R, Boch J (2016) AnnoTALE: bioinformatics tools for identification, annotation, and nomenclature of TALEs from Xanthomonas genomic sequences. Scientific Reports 6:21077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM, Harris SR (2018) Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 34:292–293

    CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    CAS  PubMed  Google Scholar 

  • Ivanović Ž, Popović T, Janse J, Kojić M, Stanković S, Gavrilović V, Fira D (2015) Molecular assessment of genetic diversity of Xanthomonas arboricola pv. juglandis strains from Serbia by various DNA fingerprinting techniques. European Journal of Plant Pathology 141:133–145

    Google Scholar 

  • Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S (2018) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications 9:5114

    PubMed  PubMed Central  Google Scholar 

  • Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC, Wang N (2013) Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range. BMC Genomics 14:551

  • Jensen BD, Vicente JG, Manandhar HK, Roberts SJ (2010) Occurrence and diversity of Xanthomonas campestris pv. campestris in vegetable Brassica fields in Nepal. Plant Disease 94:298–305

    CAS  PubMed  Google Scholar 

  • Jibrin MO, Potnis N, Timilsina S, Minsavage GV, Vallad GE, Roberts PD, Jones JB, Goss EM (2018) Genomic inference of recombination-mediated evolution in Xanthomonas euvesicatoria and X. perforans. Applied Environmental Microbiology 84:e00136-18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    PubMed  PubMed Central  Google Scholar 

  • Kollert W, Kleine M (2018) global teak study: analysis, evaluation and future potential of teak resources. IUFRO World Series 36:99

    Google Scholar 

  • Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research 27:722–736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YA, Hendson M, Panopoulos NJ, Schroth MN (1994) Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. Journal of Bacteriology 176:173–188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin RH, Peng CW, Lin YC, Peng HL, Huang HC (2011) The XopE2 effector protein of Xanthomonas campestris pv. vesicatoria is involved in virulence and in the suppression of the hypersensitive response. Botanical Studies 52:18

  • López MM, Lopez-Soriano P, Garita-Cambronero J, Beltrán C, Taghouti G, Portier P, Cubero J, Fischer-Le Saux M, Marco-Noales E (2018) Xanthomonas prunicola sp. nov., a novel pathogen that affects nectarine (Prunus persica var. nectarina) trees. International Journal of Systematic Evolutionary Microbiology 68:1857–1866

    PubMed  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the 2010 gateway computing environments workshop (GCE). Ieee, 1–8

  • Moreira LM, Almeida NF, Potnis N, Digiampietri LA, Adi SS, Bortolossi JC, Da Silva AC, Da Silva AM, De Moraes FE, De Oliveira JC (2010) Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii. BMC Genomics 11:238

  • Newberry E, Bhandari R, Minsavage G, Timilsina S, Jibrin M, Kemble J, Sikora E, Jones J, Potnis N (2019) Recently emerged and diverse lineages of Xanthomonas perforans have independently evolved through plasmid acquisition and homologous recombination originating from multiple Xanthomonas species. bioRxiv: 681619

  • Niu XN, Wei ZQ, Zou HF, Xie GG, Wu F, Li KJ, Jiang W, Tang JL, He YQ (2015) Complete sequence and detailed analysis of the first indigenous plasmid from Xanthomonas oryzae pv. oryzicola. BMC Microbiology 15:233

  • Nunney L, Schuenzel EL, Scally M, Bromley RE, Stouthamer R (2014) Large-scale intersubspecific recombination in the plant-pathogenic bacterium Xylella fastidiosa is associated with the host shift to mulberry. Applied Environmental Microbiology 80:3025–3033

    PubMed  PubMed Central  Google Scholar 

  • Nylander J (2004) MrModeltest v2. Program distributed by the author. Uppsala, Sweden: Evolutionary Biology Centre, Uppsala University

  • Odipio J, Tusiime G, Tripathi L, Aritua V (2009) Genetic homogeneity among Ugandan isolates of Xanthomonas campestris pv. musacearum revealed by randomly amplified polymorphic DNA analysis. African Journal of Biotechnology 8:5652–5660

    CAS  Google Scholar 

  • Okechukwu R, Ekpo E, Okechukwu O (2010) Seed to plant transmission of Xanthomonas campestris pv. vignicola isolates in cowpea. African Journal of Agricultural Research 5:431–435

    Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research 25:1043–1055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel M, Kulkarni Y, Dhande G (1952) Some new bacterial diseases of plants. Current Science 21:345–346

    Google Scholar 

  • Peng Z, Hu Y, Xie J, Potnis N, Akhunova A, Jones J, Liu Z, White FF, Liu S (2016) Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of Xanthomonas translucens. BMC Genomics 17:21

    PubMed  PubMed Central  Google Scholar 

  • Pieretti I, Cociancich S, Bolot S, Carrere S, Morisset A, Rott P, Royer M (2015) Full genome sequence analysis of two isolates reveals a novel Xanthomonas species close to the sugarcane pathogen Xanthomonas albilineans. Genes (basel) 6:714–733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popov G, Fraiture M, Brunner F, Sessa G (2016) Multiple Xanthomonas euvesicatoria type III effectors inhibit flg22-triggered immunity. Molecular Plant-Microbe Interactions 29:651–660

    CAS  PubMed  Google Scholar 

  • Qian W, Jia Y, Ren SX, He YQ, Feng JX, Lu LF, Sun Q, Ying G, Tang DJ, Tang H, Wu W, Hao P, Wang L, Jiang BL, Zeng S, Gu WY, Lu G, Rong L, Tian Y, Yao Z, Fu G, Chen B, Fang R, Qiang B, Chen Z, Zhao GP, Tang JL, He C (2005) Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Research 15:757–767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie DF (2000) Bacterial spot of pepper and tomato. The Plant Health Instructor. https://doi.org/10.1094/PHI-I-2000-1027-01

    Article  Google Scholar 

  • Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences 106:19126–19131

    CAS  Google Scholar 

  • Roach R, Mann R, Gambley CG, Chapman T, Shivas RG, Rodoni B (2019) Genomic sequence analysis reveals diversity of Australian Xanthomonas species associated with bacterial leaf spot of tomato, capsicum and chilli. BMC Genomics 20:310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan RP, Vorhölter F-J, Potnis N, Jones JB, Van Sluys M-A, Bogdanove AJ, Dow JM (2011) Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nature Reviews Microbiology 9:344–355

    CAS  PubMed  Google Scholar 

  • Salzberg SL, Sommer DD, Schatz MC, Phillippy AM, Rabinowicz PD, Tsuge S, Furutani A, Ochiai H, Delcher AL, Kelley D (2008) Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99 A. BMC Genomics 9:1–16

    Google Scholar 

  • Schandry N, Jacobs JM, Szurek B, Perez-Quintero AL (2018) A cautionary TALE: how plant breeding may have favoured expanded TALE repertoires in Xanthomonas. Molecular Plant Pathology 19:1297

    PubMed  PubMed Central  Google Scholar 

  • Schulze-Lefert P, Panstruga R (2011) A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends in Plant Science 16:117–125

    CAS  PubMed  Google Scholar 

  • Seemann T (2015) Snippy: Fast Bacterial Variant Calling from NGS Reads. Available at: https://github.com/tseemann/snippy. Accessed 30 Dec 2020

  • Seppey M, Manni M, Zdobnov EM (2019) BUSCO: assessing genome assembly and annotation completeness. In. Walker, JM (Eds) Gene prediction. Springer 227–245

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, Mcwilliam H, Remmert M, Söding J (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7:539

    PubMed  PubMed Central  Google Scholar 

  • Sundin GW (2007) Genomic insights into the contribution of phytopathogenic bacterial plasmids to the evolutionary history of their hosts. Annual Review of Phytopathology 45:129–151

    CAS  PubMed  Google Scholar 

  • Swings J, Van Den Mooter M, Vauterin L, Hoste B, Gillis M, Mew T, Kersters K (1990) Reclassification of the Causal Agents of Bacterial Blight (Xanthomonas campestris pv. oryzae) and Bacterial Leaf Streak (Xanthomonas campestris pv. oryzicola) of Rice as Pathovars of Xanthomonas oryzae (ex Ishiyama 1922) sp. nov., nom. Rev. International Journal of Systematic Evolutionary Microbiology 40:309–311

    Google Scholar 

  • Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Research 44:6614–6624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teper D, Sunitha S, Martin GB, Sessa G (2015) Five Xanthomonas type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signaling & Behavior 10:e1064573

    Google Scholar 

  • Timilsina S, Pereira-Martin JA, Minsavage GV, Iruegas-Bocardo F, Abrahamian P, Potnis N, Kolaczkowski B, Vallad GE, Goss EM, Jones JB (2019) Multiple recombination events drive the current genetic structure of Xanthomonas perforans in Florida. Frontiers in Microbiology 10:448

    PubMed  PubMed Central  Google Scholar 

  • Versalovic J, Schneider M, De Bruijn F, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular Celular Biology 5:25–40

    CAS  Google Scholar 

  • Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Computer Biology 13:e1005595

    Google Scholar 

  • Zamani Z, Bahar M, Jacques MA, Lak MR, Akhavan A (2011) Genetic diversity of the common bacterial blight pathogen of bean, Xanthomonas axonopodis pv. phaseoli, in Iran revealed by rep-PCR and PCR–RFLP analyses. World Journal of Microbiology Biotechnology 27:2371–2378

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Adriane Wendland Ferreira from Embrapa Arroz e Feijão for Xanthomonas citri isolates, Dr. Alice Maria Quezado-Duval from Embrapa Hortaliças for Xanthomonas euvesicatoria for copper assays, Dr. Rafaela Cristina Ferreira Borges for the teak isolate collection and Dr. Carlos Alberto Lopes from Embrapa Hortaliças for reviewing the manuscript.

Funding

This work was funded by CNPq under the project number 424704/2018–8.

Vitória L.B. Monteiro was supported by a scholarship from CNPq, Fernando Lucas de Melo is recipient of CNPq Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Vitória L.B. Monteiro performed most experiments and analysis

Fernando Lucas de Melo performed the genomic sequencing and sequence assembly

Maurício Rossato designed and directed the project, also performed the comparative genomics analysis

All authors participated on the manuscript write

Corresponding author

Correspondence to Maurício Rossato.

Ethics declarations

Conflict of interest/Competing interest statement

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3527 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro, V.L.B., Melo, F.L. & Rossato, M. Xanthomonas citri infecting teak (Tectona grandis) in Brazil, characterization and copper resistance. Trop. plant pathol. 48, 417–430 (2023). https://doi.org/10.1007/s40858-023-00579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-023-00579-4

Keywords

Navigation